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Exponentially Convergent Multiscale Finite Element Method

Summary of our contribution: ExpMsFEM

Systematic approach for solving multi-query multiscale problems efficiently
using offline bases, with state-of-the-art accuracy rigorously.

m For elliptic equations: Multiscale Modeling & Simulation 2021
m For Helmholtz equations: Multiscale Modeling & Simulation 2023

m Review paper: Communications on Applied Mathematics and
Computation 2023

Joint work with Chen, Hou.
Ongoing collaboration on generalization to the Schrodinger equation.
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Exponentially Convergent Multiscale Finite Element Method

Multiscale model reduction

m Model problem in 2D and 3D:
—V - (A(z)Vu) — P(z)u = f, in Q C RY,  w/ boundary conditions

wave mechanics, subsurface flows, electrostatics, seismology.

m Heterogeneity: A, P € L*°()) without scale separation.
0 < Apin < A(x) < Apax. f € L?(Q).
m Highly Oscillatory solutions.

m Model reduction: use a small number of local basis functions to
achieve desired accuracy theoretically and numerically.

m Desirable if same offline bases can be used with different f.
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Exponentially Convergent Multiscale Finite Element Method

Literature on multiscale methods for elliptic equations

m Local bases + global coupling

m Multiscale Finite Element Methods (MsFEM): Hou, Wu 1997
m Genealized Finite Element Methods (GFEM) via Partition of Unity
Method (PUM): Babuska, Lipton 2011

m Global bases via variational problem + local truncation
m Gamblets: Owhadi-Zhang-Berlyand 2014
m Localizable Orthogonal Decompositions (LOD): Malgqvist, Peterseim
2014

m VMS 1998, HMM 2003...
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Exponentially Convergent Multiscale Finite Element Method

Helmholtz equation and pollution effect

Helmholtz equation with high wave number k:
Lyu = —V-(AVu) — k*V2u = f, in Q, w/ boundary conditions

where V € L>(Q).
m Numerical difficulty: pollution effect (Babuska, Sauter 1997)

m Maximal mesh size to address the wave length: O(1/k).
m Standard FEM: local mesh size H = O(1/k?).
m ldeal method: H = O(1/k)!

m Mathematical challenge: indefinite operator.
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Exponentially Convergent Multiscale Finite Element Method

Overcoming the pollution effect

Two key insights and methods that capture oscillation with O(H) error

m Garding-type inequality: good approximation implies good solution.
hp—FEM with polynomial of order O(log k). (Melenk, Sauter 2010)

m Poincaré inequality: local problem resembles elliptic problem.
LOD with support size O(H log(1/H)logk). (Peterseim 2017)

Our method: Best of (G) and (P)
m ExpMsFEM with first exponential rate of convergence. (C-H-W)

m Later: PUM with same rate of convergence. (Ma-Alber-Scheichl)

Four methods have comparable complexity if aimed at minimal accuracy:
O(1/k) error in energy norm, mesh size O(1/k), DoF O(k?poly(log(k))).
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Exponentially Convergent Multiscale Finite Element Method

Explore the solution space

m Mesh structure in 2D:

nodes, edges and elements. S s B
| | | |

m Split the solution locally (P): L,,L,,x‘ -
ineach T, u = u% —i—u%. : : T !
Lyl =0inT f”f" thF”:
e N
Loud=finT : 3 3 3 3

{ u%zOon@T. e

x ENH,e ESH,TE T
m Merge: For each T, uM(z) = ub.(z)

and u®(x) = ub(x), when z € T'.
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Exponentially Convergent Multiscale Finite Element Method

Key insights of exponential accuracy

m (Generalized) harmonic-bubble splitting (Hetmaniuk, Lehoucq
2010), (Hou, Liu 2016)

m Edge localization

m Oversampling (Hou, Wu 1997) for low-complexity edge space

Theorem (Informal statement of exponentially efficient edge bases)

Suppose H = O(1/k), then for each edge e, we can find m local edge
bases such that the relative error using those edge bases to approximate

1
any edge function is at most C' exp (—bmﬁ)
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Exponentially Convergent Multiscale Finite Element Method

Sketch of our result

On a mesh of lengthscale H = O(1/k), u can be computed by

u= Z cﬂbi(l) + Z 7/)1(2) +C exp(—bmﬁ) (Energy norm)
il =
—_— =
0 (1,0(H)

b, C constants independent of H, k. ¢§1),¢£2) local support of size H.
(] 1,/11(1) via local SVD of Ly, offline, parallelizable #I, = O(m/H?)
[ 1,/11(2) via solving locally Liu = f online, parallelizable #I> = O(1/H?)
m ¢; obtained by Galerkin methods with bases wi(l); offline matrix

A data-adaptive coarse-fine scale decomposition
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Exponentially Convergent Multiscale Finite Element Method

Artificial example with rough media and high wavelength

Rough media, high wavelength & = 2 with mixed boundary conditions.
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Figure: Left: the contour of A; right: relative errors in the energy norm.

Exponential decaying error; works better in practice than PUM.
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Exponentially Convergent Multiscale Finite Element Method

Backup example of high wavenumber

mA=V=p3=1,k=27, fine mesh h = 2710 coarse mesh H = 275.

m Exact solution: u(z1,x2) = exp(—ik(0.6z1 + 0.8x2)).
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Figure: High wavenumber example. Left: ey versus m; right: er2 versus m.
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Exponentially Convergent Multiscale Finite Element Method

Backup example of high contrast: Mie resonances

1, ¢
Q. = (0.25,0.75)% N Us(j+(0.25,0.75)2), Alz) =1 , £
Ry g4, x € Q..
JEZ
B=1,V=1k=09.
S e [

m

Figure: High contrast example. Left: ey versus m; right: er2 versus m.
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Self-similar Blowup in Fluid Dynamics

Self-similar Blowup in Fluid Dynamics
m Dynamic Rescaling Formulation
m Results on 1D Models
m Future Work: beyond Self-similarity
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Millennium prize problem: blowup of 3D NS equation

3D incompressible Navier-Stokes equation:

w+u-Vu=-Vp+rvAu, V-u=0. (1)

Euler equation: v = 0. NS equation v > 0.

Blowup of a quantity of interest f:

limsup || f(t)||pe =00, T < +00.
t—T—

m Millennium prize problem: global well-posedness or finite time blowup
of (1) from smooth initial data on the whole space.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Self-similar blowup and axisymmetric equation

m Structured singularity with less DoF
m Self-similar blowup:

ft, %) = (T =) F(x/(T = 1)). ()

T blowup time; ¢y < 0: blowup rate.
m Axisymmetric Euler equation: cylindrical formulation (r, z, ), velocity
independent of 6.

m Hou-Luo 2013 : numerical evidence of self-similar blowup for smooth

initial data of 3D axisymmetric Euler equation with boundary.
Chen-Hou 2022 : rigorous proof of blowup.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Self-similar blowup candidates of 3D axisymmetric Euler

m Blowup on the boundary for H-L case

Boundary helps blowup!

m Our goal: identify and understand blowup in the interior

m (equivalently) Approaching millennium prize problem.
m Generalize blowup mechanism from 1D to 3D.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

1D models with self-similar blowup: gCLM

m Vorticity formulation w = V x u for 3D Euler:
wi+ (u-Viw=Vu - w. (3)

m Biot-Savart law, w — u via nonlocal interaction: Vu = R(w).
R: Riesz transform.

m 1D model: generalized CLM model (Okamoto-Sakajo-Wunsch 2008):
Wy + auwy = Uzw, Uz = Hw. (4)

H: Hilbert transform, 1D analogue of Riesz transform.
a: strength of advection in competition with vortex stretching.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Singularity: numerical computation

limsup [|f(¢)||pe =00, T < +0c0.
t—T—

Physical equation: compute "infinity"! Adaptive mesh in Hou-Luo.

rz-plot of |w| on 10242 mesh, ¢ = 0.003505 pr-plot of |w| on 10242 mesh, ¢ = 0.003505

00 , " [ »

(a) rz-plane (b) pn-plane
Profile equation: f(t,x) = (T — t)*F(x/(T — t)) . Finite F.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Dynamic rescaling formulation

m Profile equation for 1d gCLM model w; + auw, = u,w. Plugging in
wt,z) = (T—)“Qz/(T—t)) ,u(t,z) = (T—t)“+U (z/(T—1)%)
the self-similar ansatz and balance the terms in ¢, we get:

(qy+alU)Qy = (co +U,) R, U, = HQ. (5)

m Dynamic rescaling formulation (DRF) for time-depedent ¢, c,:

Q4+ (qy+al)Qy = (co +Uy)Q, U, =HQ. (6)

Equivalent to original equation by time rescaling.

Steady state recovers profiles.

Finite time blowup holds if ¢, < —C < 0 and is self-similar if Q, U
converge to a profile.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Literature review on DRF

m Modulation technique (dispersive equations):
m Nonlinear Schrédinger equation:
McLaughlin-Papanicolaou-Sulem-Sulem 1986
m Nonlinear wave equation: Merle, Zaag 2015
m Nonlinear heat equation: Merle, Raphael 1997
m Generalized KdV equation: Martel-Merle-Raphael 2014

m Fluid dynamics:
m De Gregorio 1D model: Chen-Hou-Huang 2021
m 2D Boussinesq and 3D Euler with C1® data: Chen-Hou 2020
m 2D Boussinesq and 3D Euler with smooth data: Chen-Hou 2022
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Framework of establishing self-similar blowup

Approximate profile: explicit construction; solving DRF/ profile.
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Framework of establishing self-similar blowup

Approximate profile: explicit construction; solving DRF/ profile.

Stability: all initial data close to the approximate profile would
develop finite-time blowup, i.e. the blowup is stable.

m Weighted L? estimate or L> estimate using characteristics.
m Rigorous proof: interval arithmetic of numerical verifications.

@ Approximate steady state

@ True steady state

N T Stabilizing effect =>
Boundary of ||v — 7| <5 ——
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SRS ETR S VIR R S T M YAETG IS Dynamic Rescaling Formulation

Framework of establishing self-similar blowup

Approximate profile: explicit construction; solving DRF/ profile.

Stability: all initial data close to the approximate profile would
develop finite-time blowup, i.e. the blowup is stable.

m Weighted L? estimate or L> estimate using characteristics.
m Rigorous proof: interval arithmetic of numerical verifications.

@ Approximate steady state

@ True steady state

N T Stabilizing effect =>
Boundary of ||v — 7| <5 ——

Characterization of the blowup: rate, regularity, asymptotics...
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Conjecture on blowup regularity of CCF model

CCF model (Cordoba-Cordoba-Fontelos 2005):

W — Uy = Ugw, Uy = Hw. (7)

Conjecture (Conjecture on blowup regularity (Silvestre, Vicol 2016))

Until blowup time, the solution of (7) will have bounded C~*/?-norm.

Our work: (ongoing with Chen, Hou) Construction of a specific self-similar
profile disproving the conjecture.

m Smooth profiles do not violate the conjecture numerically.

m Constructed profile w = O(x7/6) near the origin.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

A more faithful 1D model: Hou-Li

m N-S equation in axisymmetric case:

Uit — Twl,zul,r + (2¢1 + Twl,r)ul,z = 2ulwl,z + vAuy,
Wit — 1 wi e + (201 + 1w, = (u%)z + vAwy , (8)
—[02 4+ (3/r)0, + 2] ¥ = wy .

m Hou-Li (2008) constant approximation in r-direction:

up + 29u, = 2u, + vu,, ,
wt + 2”(/)0.)2 = (U2)z +rvw,, , (9)

_¢zz =w.

m Model is well-posed in C'; convection is weaker in 3D.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Our result on Hou-Li model

Weak convection model:

U + 2apuy = 2uy, + Vg,
wi + 2apw, = (U2)x + Ve (10)

_w:(:x =w.

Our work: (forthcoming paper with Hou)

Theorem (Blowup of (10) with periodicity in x)

There exists steady blowups with scaling index in space ¢; = 0, for
a < 1 close to 1, v = 0, self-similar blowup with smooth data;
a <1 close to 1, v > 0, blowup with smooth data;
a =1, v =0, self-similar blowup with any Hélder o < 1 regularity.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Proof of linear stability

m Explicit approximate profiles: from the steady state for a = 1.
(@, 1, 1) = (sinx,sinz,sinz).

m Linear stability for the perturbation:

1d 2
2dt(HUH Allwll3,) & (L1 u)yg +(L2,w)y, S —[llull,+lwlz,] -
L1 = —2sinxu, — 2cosxy) + 2ucos x + 2 sin x,
Lo = —2sin xw, — 2 cosxy + 2ucosx + 2sin xu, .

m Singular weights: pg = ﬁ,pk = (1 + cos m)k with the norm
El% (t) = (u(k+1)a U(k+1)Pk) + (W(k)aw(k)ﬁ)k) .

Damping in the leading order term.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Difficulties in linear estimate

m Estimate of local and nonlocal terms in L2:

Dy =— [(’U,x, uxp) + (W,U.)p) + (U, ’LL,O)]
+ 2[—(cos zp,wp) + (sinxth, uyp) + (wcosx,wp)].

m Exact computation in Fourier basis to avoid overestimate.

m Establish negative-definiteness of quadratic form (w.r.t Fourier
coefficients) with decaying entries.

m Computer-assisted verification of finite truncation: the quadratic
form projected in first 200 basis.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Backup slide: difficulties in viscous terms

m HF estimates for the viscous term spit out for example

(WFD w® gy a2 —(EFD WEFD oy 4 O () (WP, w®) py_y) .
m Criteria for the norm:
m Linear damping

m Stronger than WW3°°-norm near the origin
m Control on viscous terms

m Combination of a cascade of norms to close the estimate:

4
=> B, p<l.
k=0

Multiscale and Singularity May 11, 2023 28 /33



Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Comparison of numerical methods

Adaptive mesh for physical equation: problem specific methods,
under-resolution, requires scaling and fitting, only stable profile.
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Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Comparison of numerical methods

Adaptive mesh for physical equation: problem specific methods,
under-resolution, requires scaling and fitting, only stable profile.

DRF equation: problem specific methods, solves for profiles, only
stable profile, high accuracy.

Multiscale and Singularity May 11, 2023 29/33



Self-similar Blowup in Fluid Dynamics [ESCEIIERT DR [Y-

Comparison of numerical methods

Adaptive mesh for physical equation: problem specific methods,
under-resolution, requires scaling and fitting, only stable profile.

DRF equation: problem specific methods, solves for profiles, only
stable profile, high accuracy.

NN based approach for profile (PINN/PINO): generic method, solves
for profiles, unstable profile? high accuracy?
m Wang-Lai-Gomez-Buckmaster 2022: PINN for 2D Boussinesq profile.
m Our work: Neurips workshop 2022 and forthcoming paper with Maust,

Li et al., on generalizing Fourier Neural Operators to non-periodic
problems in 1D and higher dimensions.
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SR SSTUTETR S COIT- LR S (T A ETGISI  Future Work: beyond Self-similarity

Blowup beyond self-similar setting

m Numerical evidence by Hou on 3D Euler/N-S interior singularity:
two-scale blowup phenomena, differing by a logarithmic correction.
m Increase ambient dimension to ~ 3.2 to observe self-similar blowup.

m We studied non self-similar blowups in modified Burgers' equation.

m Other models with log corrections: hydrostatic Euler equation,
nonlinear Schrodinger equation, 2D Keller-Segel equation...
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SR SSTUTETR S COIT- LR S (T A ETGISI  Future Work: beyond Self-similarity

Future work

m Singularity formulation:
m Introduce frameworks to study mathematically and numerically
blowup with log-like corrections.
m Optimization-based methods (PINNs) to solve numerically blowups
unstable in DRF: vary the dimension and identify a blowup with
scaling matching the theoretical scaling for N-S.

m Multiscale problems: numerical experiment for higher dimensions;
theory for higher-order operators; operator learning for solving
local problems.
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SR SSTUTETR S COIT- LR S (T A ETGISI  Future Work: beyond Self-similarity

Backup example: Keller-Segel equation

m 2D Keller-Segel equation, describing chemotaxis in biology

Oou=Au—V - (uV®,), in R?
0=Ad, +u.

m Mass preservation; blowup when M > 8.

m Stationary profile: Q(z) = (Hli'z)Q.

m Self-similar variables:

(2,1) (2,7) x dr 1
u\xr = ——wl(Z%, 5 z = 5 - )
A Tt dt T—t
1
o-w=V-(Vw—-wVd,) — 2V - (zw).
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SR SSTUTETR S COIT- LR S (T A ETGISI  Future Work: beyond Self-similarity

Backup example: Keller-Segel equation

m Blowup variables:

1 z
w(z,7) = Qu(2) +n(z,7), where Q,(2) = ﬁQ <;) ,
while the next-order term 7 solves
.1
o-m=L'n+ (l; - 2) V- (2Q,) —V-(n®,), v — 0unknown,

m Final result: (Collot-Ghoul-Masmoudi-Nguyen 2021)

e = 0 () <10 )]

A(t) ~ 2%~ T — t exp <_|log(T—t)\> .

Multiscale and Singularity May 11, 2023 33/33



	Exponentially Convergent Multiscale Finite Element Method
	Self-similar Blowup in Fluid Dynamics
	Dynamic Rescaling Formulation
	Results on 1D Models
	Future Work: beyond Self-similarity


