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Exponentially Convergent Multiscale Finite Element Method

Summary of our contribution: ExpMsFEM

Systematic approach for solving multi-query multiscale problems efficiently
using offline bases, with state-of-the-art accuracy rigorously.

For elliptic equations: Multiscale Modeling & Simulation 2021
For Helmholtz equations: Multiscale Modeling & Simulation 2023
Review paper: Communications on Applied Mathematics and
Computation 2023

Joint work with Chen, Hou.
Ongoing collaboration on generalization to the Schrödinger equation.
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Exponentially Convergent Multiscale Finite Element Method

Multiscale model reduction

Model problem in 2D and 3D:

−∇ · (A(x)∇u)− P (x)u = f, in Ω ⊂ Rd, w/ boundary conditions

wave mechanics, subsurface flows, electrostatics, seismology.
Heterogeneity: A,P ∈ L∞(Ω) without scale separation.
0 < Amin ≤ A(x) ≤ Amax. f ∈ L2(Ω).
Highly Oscillatory solutions.

Model reduction: use a small number of local basis functions to
achieve desired accuracy theoretically and numerically.

Desirable if same offline bases can be used with different f .
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Exponentially Convergent Multiscale Finite Element Method

Literature on multiscale methods for elliptic equations

Local bases + global coupling
Multiscale Finite Element Methods (MsFEM): Hou, Wu 1997
Genealized Finite Element Methods (GFEM) via Partition of Unity
Method (PUM): Babuska, Lipton 2011

Global bases via variational problem + local truncation
Gamblets: Owhadi-Zhang-Berlyand 2014
Localizable Orthogonal Decompositions (LOD): Malqvist, Peterseim
2014

VMS 1998, HMM 2003...
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Exponentially Convergent Multiscale Finite Element Method

Helmholtz equation and pollution effect

Helmholtz equation with high wave number k:

Lku := −∇ · (A∇u)− k2V 2u = f, in Ω, w/ boundary conditions

where V ∈ L∞(Ω).
Numerical difficulty: pollution effect (Babuska, Sauter 1997)

Maximal mesh size to address the wave length: O(1/k).
Standard FEM: local mesh size H = O(1/k2).
Ideal method: H = O(1/k)!

Mathematical challenge: indefinite operator.
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Exponentially Convergent Multiscale Finite Element Method

Overcoming the pollution effect

Two key insights and methods that capture oscillation with O(H) error
Gårding-type inequality: good approximation implies good solution.
hp−FEM with polynomial of order O(log k). (Melenk, Sauter 2010)

Poincaré inequality: local problem resembles elliptic problem.
LOD with support size O(H log(1/H) log k). (Peterseim 2017)

Our method: Best of (G) and (P)
ExpMsFEM with first exponential rate of convergence. (C-H-W)

Later: PUM with same rate of convergence. (Ma-Alber-Scheichl)
Four methods have comparable complexity if aimed at minimal accuracy:
O(1/k) error in energy norm, mesh size O(1/k), DoF O(kdpoly(log(k))).
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Exponentially Convergent Multiscale Finite Element Method

Explore the solution space (G)

Mesh structure in 2D:
nodes, edges and elements.

Split the solution locally (P):
in each T , u = uhT + ubT .{

LkuhT = 0 in T

uhT = u on ∂T,{
LkubT = f in T

ubT = 0 on ∂T.

Merge: For each T , uh(x) = uhT (x)
and ub(x) = ubT (x), when x ∈ T .

T

e

x

x ∈ NH , e ∈ EH , T ∈ TH
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Exponentially Convergent Multiscale Finite Element Method

Key insights of exponential accuracy

(Generalized) harmonic-bubble splitting (Hetmaniuk, Lehoucq
2010), (Hou, Liu 2016)
Edge localization
Oversampling (Hou, Wu 1997) for low-complexity edge space

Theorem (Informal statement of exponentially efficient edge bases)

Suppose H = O(1/k), then for each edge e, we can find m local edge
bases such that the relative error using those edge bases to approximate
any edge function is at most C exp

(
−bm

1
d+1

)
.
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Exponentially Convergent Multiscale Finite Element Method

Sketch of our result

On a mesh of lengthscale H = O(1/k), u can be computed by

u =
∑
i∈I1

ciψ
(1)
i︸ ︷︷ ︸

(I)

+
∑
i∈I2

ψ
(2)
i︸ ︷︷ ︸

(II),O(H)

+C exp(−bm
1
d+1 ) (Energy norm)

b, C constants independent of H, k. ψ(1)
i , ψ

(2)
i local support of size H.

ψ
(1)
i via local SVD of Lk, offline, parallelizable #I1 = O(m/Hd)

ψ
(2)
i via solving locally Lku = f online, parallelizable #I2 = O(1/Hd)

ci obtained by Galerkin methods with bases ψ(1)
i ; offline matrix

A data-adaptive coarse-fine scale decomposition
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Exponentially Convergent Multiscale Finite Element Method

Artificial example with rough media and high wavelength

Rough media, high wavelength k = 25 with mixed boundary conditions.
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Figure: Left: the contour of A; right: relative errors in the energy norm.

Exponential decaying error; works better in practice than PUM.
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Exponentially Convergent Multiscale Finite Element Method

Backup example of high wavenumber

A = V = β = 1, k = 27, fine mesh h = 2−10, coarse mesh H = 2−5.

Exact solution: u(x1, x2) = exp(−ik(0.6x1 + 0.8x2)).
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Figure: High wavenumber example. Left: eH versus m; right: eL2 versus m.
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Exponentially Convergent Multiscale Finite Element Method

Backup example of high contrast: Mie resonances

Ωε = (0.25, 0.75)2 ∩
⋃
j∈Z2

ε
(
j + (0.25, 0.75)2

)
, A(x) =

{
1, x /∈ Ωε

ε2, x ∈ Ωε .

β = 1, V = 1, k = 9.
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Figure: High contrast example. Left: eH versus m; right: eL2 versus m.
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Self-similar Blowup in Fluid Dynamics
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Millennium prize problem: blowup of 3D NS equation

3D incompressible Navier-Stokes equation:

ut + u · ∇u = −∇p + ν∆u, ∇ · u = 0 . (1)

Euler equation: ν = 0. NS equation ν > 0.

Blowup of a quantity of interest f :

lim sup
t→T−

‖f(t)‖L∞ =∞, T < +∞ .

Millennium prize problem: global well-posedness or finite time blowup
of (1) from smooth initial data on the whole space.
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Self-similar blowup and axisymmetric equation

Structured singularity with less DoF
Self-similar blowup:

f(t,x) = (T − t)cfF (x/(T − t)cl) . (2)

T : blowup time; cf < 0: blowup rate.
Axisymmetric Euler equation: cylindrical formulation (r, z, θ), velocity
independent of θ.

Hou-Luo 2013 : numerical evidence of self-similar blowup for smooth
initial data of 3D axisymmetric Euler equation with boundary.
Chen-Hou 2022 : rigorous proof of blowup.

Yixuan Wang Multiscale and Singularity May 11, 2023 16 / 33



Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Self-similar blowup candidates of 3D axisymmetric Euler

Blowup on the boundary for H-L case

Boundary helps blowup!

Our goal: identify and understand blowup in the interior
(equivalently) Approaching millennium prize problem.
Generalize blowup mechanism from 1D to 3D.
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

1D models with self-similar blowup: gCLM

Vorticity formulation ω = ∇× u for 3D Euler:

ωt + (u · ∇)ω = ∇u · ω . (3)

Biot-Savart law, ω → u via nonlocal interaction: ∇u = R(ω).
R: Riesz transform.

1D model: generalized CLM model (Okamoto-Sakajo-Wunsch 2008):

ωt + auωx = uxω, ux = Hω . (4)

H: Hilbert transform, 1D analogue of Riesz transform.
a: strength of advection in competition with vortex stretching.
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Singularity: numerical computation

lim sup
t→T−

‖f(t)‖L∞ =∞, T < +∞ .

1 Physical equation: compute "infinity"! Adaptive mesh in Hou-Luo.

2 Profile equation: f(t,x) = (T − t)cfF(x/(T − t)cl) . Finite F.
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Dynamic rescaling formulation

Profile equation for 1d gCLM model ωt + auωx = uxω. Plugging in

ω(t, x) = (T−t)cωΩ(x/(T−t)cl) , u(t, x) = (T−t)cω+clU(x/(T−t)cl)

the self-similar ansatz and balance the terms in t, we get:

(cly + aU) Ωy = (cω + Uy) Ω, Uy = HΩ . (5)

Dynamic rescaling formulation (DRF) for time-depedent cl, cω:

Ωτ + (cly + aU) Ωy = (cω + Uy) Ω, Ux = HΩ . (6)

Equivalent to original equation by time rescaling.
Steady state recovers profiles.
Finite time blowup holds if cω ≤ −C < 0 and is self-similar if Ω, U
converge to a profile.
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Literature review on DRF

Modulation technique (dispersive equations):
Nonlinear Schrödinger equation:
McLaughlin-Papanicolaou-Sulem-Sulem 1986
Nonlinear wave equation: Merle, Zaag 2015
Nonlinear heat equation: Merle, Raphael 1997
Generalized KdV equation: Martel-Merle-Raphael 2014

Fluid dynamics:
De Gregorio 1D model: Chen-Hou-Huang 2021
2D Boussinesq and 3D Euler with C1,α data: Chen-Hou 2020
2D Boussinesq and 3D Euler with smooth data: Chen-Hou 2022
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Self-similar Blowup in Fluid Dynamics Dynamic Rescaling Formulation

Framework of establishing self-similar blowup

1 Approximate profile: explicit construction; solving DRF/ profile.

2 Stability: all initial data close to the approximate profile would
develop finite-time blowup, i.e. the blowup is stable.

Weighted L2 estimate or L∞ estimate using characteristics.
Rigorous proof: interval arithmetic of numerical verifications.

3 Characterization of the blowup: rate, regularity, asymptotics...
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Conjecture on blowup regularity of CCF model

CCF model (Cordoba-Cordoba-Fontelos 2005):

ωt − uωx = uxω, ux = Hω . (7)

Conjecture (Conjecture on blowup regularity (Silvestre, Vicol 2016))

Until blowup time, the solution of (7) will have bounded C−1/2-norm.

Our work: (ongoing with Chen, Hou) Construction of a specific self-similar
profile disproving the conjecture.

Smooth profiles do not violate the conjecture numerically.
Constructed profile ω = O(x7/6) near the origin.
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

A more faithful 1D model: Hou-Li

N-S equation in axisymmetric case:

u1,t − rψ1,zu1,r + (2ψ1 + rψ1,r)u1,z = 2u1ψ1,z + ν∆u1 ,

ω1,t − rψ1,zω1,r + (2ψ1 + rψ1,r)ω1,z =
(
u21
)
z

+ ν∆ω1 ,

−
[
∂2r + (3/r)∂r + ∂2z

]
ψ1 = ω1 .

(8)

Hou-Li (2008) constant approximation in r-direction:

ut + 2ψuz = 2uψz + νuzz ,

ωt + 2ψωz =
(
u2
)
z

+ νωzz ,

−ψzz = ω .

(9)

Model is well-posed in C1; convection is weaker in 3D.
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Our result on Hou-Li model

Weak convection model:

ut + 2aψux = 2uψx + νuxx ,

ωt + 2aψωx =
(
u2
)
x

+ νωxx ,

−ψxx = ω .

(10)

Our work: (forthcoming paper with Hou)

Theorem (Blowup of (10) with periodicity in x)

There exists steady blowups with scaling index in space cl = 0, for
1 a < 1 close to 1, ν = 0, self-similar blowup with smooth data;
2 a < 1 close to 1, ν > 0, blowup with smooth data;
3 a = 1, ν = 0, self-similar blowup with any Hölder α < 1 regularity.
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Proof of linear stability

Explicit approximate profiles: from the steady state for a = 1.

(ω̄, ū, ψ̄) = (sinx, sinx, sinx).

Linear stability for the perturbation:

D :=
1

2

d

dt
(‖u‖2χ1

+‖ω‖2χ2
) ≈ (L1, u)χ1+(L2, ω)χ2 . −[‖u‖2χ1

+‖ω‖2χ2
] .

L1 = −2sinxux − 2 cosxψ + 2u cosx+ 2 sinxψx ,

L2 = −2sinxωx − 2 cosxψ + 2u cosx+ 2 sinxux .

Singular weights: ρ0 = 1
1−cosx , ρk = (1 + cosx)k with the norm

E2
k(t) = (u(k+1), u(k+1)ρk) + (ω(k), ω(k)ρk) .

Damping in the leading order term.
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Difficulties in linear estimate

Estimate of local and nonlocal terms in L2:

D0 =− [(ux, uxρ) + (ω, ωρ) + (u, uρ)]

+ 2[−(cosxψ, ωρ) + (sinxψ, uxρ) + (u cosx, ωρ)] .

Exact computation in Fourier basis to avoid overestimate.

Establish negative-definiteness of quadratic form (w.r.t Fourier
coefficients) with decaying entries.

Computer-assisted verification of finite truncation: the quadratic
form projected in first 200 basis.
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Backup slide: difficulties in viscous terms

Hk estimates for the viscous term spit out for example

(ω(k+2), ω(k)ρk) ≈ −(ω(k+1), ω(k+1)ρk) + C(k)(ω(k), ω(k)ρk−1) .

Criteria for the norm:
Linear damping
Stronger than W 3,∞-norm near the origin
Control on viscous terms

Combination of a cascade of norms to close the estimate:

I2 =

4∑
k=0

E2
kµ

k , µ� 1 .
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Self-similar Blowup in Fluid Dynamics Results on 1D Models

Comparison of numerical methods

1 Adaptive mesh for physical equation: problem specific methods,
under-resolution, requires scaling and fitting, only stable profile.

2 DRF equation: problem specific methods, solves for profiles, only
stable profile, high accuracy.

3 NN based approach for profile (PINN/PINO): generic method, solves
for profiles, unstable profile? high accuracy?

Wang-Lai-Gomez-Buckmaster 2022: PINN for 2D Boussinesq profile.
Our work: Neurips workshop 2022 and forthcoming paper with Maust,
Li et al., on generalizing Fourier Neural Operators to non-periodic
problems in 1D and higher dimensions.
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Self-similar Blowup in Fluid Dynamics Future Work: beyond Self-similarity

Blowup beyond self-similar setting

Numerical evidence by Hou on 3D Euler/N-S interior singularity:
two-scale blowup phenomena, differing by a logarithmic correction.

Increase ambient dimension to ≈ 3.2 to observe self-similar blowup.

We studied non self-similar blowups in modified Burgers’ equation.

Other models with log corrections: hydrostatic Euler equation,
nonlinear Schrödinger equation, 2D Keller-Segel equation...
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Self-similar Blowup in Fluid Dynamics Future Work: beyond Self-similarity

Future work

Singularity formulation:
Introduce frameworks to study mathematically and numerically
blowup with log-like corrections.
Optimization-based methods (PINNs) to solve numerically blowups
unstable in DRF: vary the dimension and identify a blowup with
scaling matching the theoretical scaling for N-S.

Multiscale problems: numerical experiment for higher dimensions;
theory for higher-order operators; operator learning for solving
local problems.
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Self-similar Blowup in Fluid Dynamics Future Work: beyond Self-similarity

Backup example: Keller-Segel equation

2D Keller-Segel equation, describing chemotaxis in biology{
∂tu = ∆u−∇ · (u∇Φu) , in R2

0 = ∆Φu + u .

Mass preservation; blowup when M > 8π.

Stationary profile: Q(x) = 8
(1+|x|2)2 .

Self-similar variables:

u(x, t) =
1

T − t
w(z, τ), z =

x√
T − t

,
dτ

dt
=

1

T − t
,

∂τw = ∇ · (∇w − w∇Φw)− 1

2
∇ · (zw).
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Self-similar Blowup in Fluid Dynamics Future Work: beyond Self-similarity

Backup example: Keller-Segel equation

Blowup variables:

w(z, τ) = Qν(z) + η(z, τ), where Qν(z) =
1

ν2
Q
(z
ν

)
,

while the next-order term η solves

∂τη = Lνη +

(
ντ
ν
− 1

2

)
∇ · (zQν)−∇ · (ηΦη) , ν → 0 unknown ,

Final result: (Collot-Ghoul-Masmoudi-Nguyen 2021)

u(x, t) =
1

λ2(t)

[
Q

(
x− a(t)

λ(t)

)
+ ε(x, t)

]
,

λ(t) ∼ 2e−
γ+2
2

√
T − t exp

(
−
√
| log(T − t)|√

2

)
.
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