Exponentially Convergent Multiscale Methods Based on Edge Coupling: Example of Helmholtz Equation

Yixuan Wang*

Caltech roywang@caltech.edu

*joint work with Thomas Hou, Yifan Chen

November 28, 2022

× 1×	(III) n	~~///	200	
	uan	~ ~ ~	ang	

Edge Basis for Multiscale Problems

November 28, 2022

1 Helmholtz Equation

- 2 Coarse-Fine Scale Decomposition
- **3** Exponentially Efficient Edge Basis
- Multiscale Method 4
- 5 Numerical Experiments
- 6 Conclusions

3

$\mathsf{Section}\ 1$

Helmholtz Equation

Edge Basis for Multiscale Problems

November 28, 2022

< ∃ >

э

3/35

Setting of Helmholtz Equation

Helmholtz equation with mixed boundary conditions:

$$\begin{cases} -\nabla \cdot (A\nabla u) - k^2 V^2 u = f, \text{ in } \Omega, \\ u = 0, \text{ on } \Gamma_D, \\ A\nabla u \cdot \nu = T_k u, \text{ on } \Gamma_N \cup \Gamma_R, \end{cases}$$
(1)

where $A_{\min} \leq A(x) \leq A_{\max}$, $\beta_{\min} \leq \beta(x) \leq \beta_{\max}$, $V_{\min} \leq V(x) \leq V_{\max}$, $T_k u = 0$ for $x \in \Gamma_N$, and $T_k u = ik\beta u$ for $x \in \Gamma_R$.

Bilinear form:

$$a(u,v) := (A\nabla u, \nabla v)_{\Omega} - k^2 (V^2 u, v)_{\Omega} - (T_k u, v)_{\Gamma_N \cup \Gamma_R}.$$
 (2)

Associated norm:

$$||u||_{\mathcal{H}(\Omega)} := \int_{\Omega} A|\nabla u|^2 + k^2 |Vu|^2.$$
 (3)

Applications of Helmholtz Equation

- 1 Wave mechanics
- 2 Electrostatics
- 3 Seismology
- 4 Acoustics

3

Pollution Effect

- I. Babuska, SINUM 1997.
 - Mesh size sufficient to address the wave length: O(1/k).
 - For standard FEM: $h = O(1/k^2)$.
 - Ideal method: H = O(1/k)!
 - *hp*−FEM with local polynomial of order *O*(log *k*). Melenk, Math. Comp., 2011.
 - Localizable orthogonal decompositions (LOD) with basis of support size $O(H \log(1/H))$. Peterseim, Math. Comp., 2014.
 - Multiscale edge basis with exponential rate of convergence.
 - A later work: Partition of unity method (PUM) with exponential rate of convergence. Ma, 2021.
 - Fast solver with preconditioner: Ying, CPAM, 2011.

Sketch of Contributions

Our result: on a mesh of lengthscale H = O(1/k), u can be computed by

$$u = \underbrace{\sum_{i \in I_1} c_i \psi_i^{(1)}}_{(\mathsf{I})} + \underbrace{\sum_{i \in I_2} \psi_i^{(2)}}_{(\mathsf{II})} + C \exp(-bm^{\frac{1}{d+1}})$$
 (Energy norm)

b, C constants independent of H, k. $\psi_i^{(1)}, \psi_i^{(2)}$ local support of size H. • $\psi_i^{(1)}$ obtained by *local* SVD of \mathcal{L}_{θ} $#I_1 = O(m/H^d)$ • $\psi_i^{(2)}$ obtained by solving *local* $\mathcal{L}_{\theta} u = f$ $\#I_2 = O(1/H^d)$ • c_i obtained by Galerkin's methods with basis functions $\psi_i^{(1)}$ $\blacksquare (II) = O(H) \text{ (Energy norm)}$

A data-adaptive coarse-fine scale decomposition

7/35

Continuity Estimate and Stability

Continuity estimate:

$$|a(u,v)| \le C_c ||u||_{\mathcal{H}(\Omega)} ||v||_{\mathcal{H}(\Omega)}.$$
(4)

• Stability: Let $N_k f := u$ be the solution operator.

$$\sup_{f \in L^2(\Omega) \setminus \{0\}} \frac{\|N_k f\|_{\mathcal{H}}}{\|f\|_{L^2(\Omega)}} =: C_{\text{stab}} < \infty.$$
(5)

Assumption on the stability constant: $C_{\text{stab}} \leq C_0 k^{\alpha}$.

8/35

Section 2

Coarse-Fine Scale Decomposition

Edge Basis for Multiscale Problems

November 28, 2022

3

Detour on Elliptic PDEs

Problem formulation:

$$\begin{cases} -\nabla \cdot (a\nabla u) = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

- $\Omega = [0,1]^2 \text{ and } u \in H^1_0(\Omega), f \in L^2(\Omega).$
- **Galerkin methods**: choose a finite-dim space $V_H \subset H_0^1(\Omega)$:

Find $u_H \in V_H$ such that $\int_{\Omega} a \nabla u_H \cdot \nabla v = \int_{\Omega} f v$ for any $v \in V_H$. *Optimality*: (notation $||u||_{H^1_a(\Omega)} := \int_{\Omega} a |\nabla u|^2$) $||u - u_H||_{H^1_a(\Omega)} = \inf_{v \in V_H} ||u - v||_{H^1_a(\Omega)}$.

 V_H needs to approximate the solution space well in the $H^1_a(\Omega)$ norm.

Yixuan Wang

Edge Basis for Multiscale Problems

November 28, 2022

10/35

Explore the Solution Space

- Mesh structure: nodes, edges and elements.
- Split the solution locally: in each T, $u = u_T^{h} + u_T^{b}$. $\begin{cases}
 -\nabla \cdot (A \nabla u_T^{h}) - k^2 V^2 u_T^{h} = 0 \text{ in } T \\
 u_T^{h} = u \text{ on } \partial T, \\
 U_T^{h} = u \text{ on } \partial T, \\
 U_T^{h} = 0 \text{ on } \partial T.
 \end{cases}$ $\begin{cases}
 -\nabla \cdot (A \nabla u_T^{b}) - k^2 V^2 u_T^{b} = f \text{ in } T \\
 u_T^{b} = 0 \text{ on } \partial T.
 \end{cases}$ $x \in \mathcal{N}_H, e \in \mathcal{E}_H, T \in \mathcal{T}_H$
- Merge: For each T, $u^{\mathsf{h}}(x) = u_T^{\mathsf{h}}(x)$ and $u^{\mathsf{b}}(x) = u_T^{\mathsf{b}}(x)$, when $x \in T$.

Coarse-fine Scale Decomposition

- Poincaré inequality: $||v||_{L^2(T)} \leq C_P H ||\nabla v||_{L^2(T)}$.
- Mesh assumption: $H \leq A_{\min}^{1/2}/(\sqrt{2}C_P V_{\max}k)$.
- Decomposition: $u = u^{\mathsf{h}} + u^{\mathsf{b}} \in V^{\mathsf{h}} + V^{\mathsf{b}}$.

$$V^{\mathsf{h}} := \{ v \in \mathcal{H}(\Omega) : -\nabla \cdot (A\nabla v) - k^2 V^2 v = 0 \text{ in each } T \in \mathcal{T}_H, \\ A\nabla v \cdot \nu = T_k v, \text{ on } \Gamma_N \cup \Gamma_R \} \quad (harmonic part) \\ V^{\mathsf{b}} := \{ v \in \mathcal{H}(\Omega) : v = 0 \text{ on each } e \in \mathcal{E}_H \} \quad (bubble part) \end{cases}$$

For $v \in V^{\mathsf{h}}$ and $w \in V^{\mathsf{b}}$, it holds that a(v, w) = 0.

This decomposition makes sense by the C^{α} estimate of the solution.

Yixuan Wang

Edge Basis for Multiscale Problems

Small Bubble Part

Bubble part is local and small:

$$\|u^{\mathsf{b}}\|_{\mathcal{H}(\Omega)} \leq \frac{3C_P}{A_{\min}^{1/2}} H \|f\|_{L^2(\Omega)}.$$

i.e. u^{b} oscillates at a frequency larger than O(1/H).

Bubble part is the fine scale part.

Approximation of Harmonic Part

Observation: V^{h} is isomorphic to an edge space:

$$V^{\mathsf{h}} := \{ v \in \mathcal{H}(\Omega) : -\nabla \cdot (A\nabla v) - k^2 V^2 v = 0 \text{ in each } T \in \mathcal{T}_H, \\ A\nabla v \cdot \nu = T_k v, \text{ on } \Gamma_N \cup \Gamma_R \}$$

Functions in V^{h} , locally solving Helmholtz-harmonic problems, only depend on values of v on edges.

Galerkin's solution u_H now only approximates the harmonic part.

Section 3

Exponentially Efficient Edge Basis

Edge Basis for Multiscale Problems

November 28, 2022

I ⇒

Localization to Edge Functions

• Edge function: $u^{\mathsf{h}} : \Omega \to \mathbb{R}$ restricted to edges: $\tilde{u}^{\mathsf{h}} : E_H \to \mathbb{R}$.

Task: find edge basis functions to approximate \tilde{u}^{h} .

• Localization to each edge: $(\tilde{u}^{h} - I_{H}\tilde{u}^{h})|_{e}$ vanishes at nodal points where I_{H} is nodal interpolation operator, e.g., by linear tent functions.

Next: find edge basis functions to approximate $(\tilde{u}^{h} - I_{H}\tilde{u}^{h})|_{e}$ for each e.

The edge residual $R_e \tilde{u}^{\mathsf{h}} := (\tilde{u}^{\mathsf{h}} - I_H \tilde{u}^{\mathsf{h}})|_e$ lies in the Lions-Magenes space, i.e. functions $v \in H^{1/2}(e)$ s.t. $\frac{v(x)}{\operatorname{dist}(x,\partial e)} \in L^2(e)$, by the C^{α} estimate.

Local Approximation via Oversampling

• Oversampling:
$$e \subset \omega_e := \overline{\bigcup \{T \in \mathcal{T}_H : \overline{T} \cap e \neq \emptyset\}}$$
.
on $e : u^{\mathsf{h}} - I_H u^{\mathsf{h}} = (u^{\mathsf{h}}_{\omega_e} - I_H u^{\mathsf{h}}_{\omega_e}) + (u^{\mathsf{b}}_{\omega_e} - I_H u^{\mathsf{b}}_{\omega_e})$.
 $u^{\mathsf{h}}_{\omega_e}, u^{\mathsf{b}}_{\omega_e}$: oversampling harmonic / bubble part.

• Special harmonic function: $u^{s} \in V^{h}$ is a special harmonic function such that its restriction on each edge $e \in E_{H}$ equals $\tilde{u}_{\omega_{e}}^{b} - I_{H}\tilde{u}_{\omega_{e}}^{b}$. Recall the definition:

$$\begin{cases} -\nabla \cdot (A\nabla u_{\omega_e}^{\mathsf{h}}) - k^2 V^2 u_{\omega_e}^{\mathsf{h}} = 0 \text{ in } \omega_e \\ u_{\omega_e}^{\mathsf{h}} = u \text{ on } \partial \omega_e, \\ -\nabla \cdot (A\nabla u_{\omega_e}^{\mathsf{h}}) - k^2 V^2 u_{\omega_e}^{\mathsf{h}} = f \text{ in } \omega_e \\ u_{\omega_e}^{\mathsf{h}} = 0 \text{ on } \partial \omega_e. \end{cases}$$

Next: Restrictions of harmonic part are of low complexity!

Edge Basis for Multiscale Problems

Local Norm for Approximation

• The $\mathcal{H}^{1/2}(e)$ norm: (connect back to energy norms)

$$\|\tilde{\psi}\|_{\mathcal{H}^{1/2}(e)}^2 := \int_{\Omega} A|\nabla\psi|^2 + k^2 |V\psi|^2.$$

where ψ is the harmonic extension of $\tilde{\psi}$ to neighboring elements.

Theorem (Edge Coupling)

If on each edge, there is \tilde{v}_e such that the local error satisfies

$$\|\tilde{u}_{\omega_e}^{\mathsf{h}} - I_H \tilde{u}_{\omega_e}^{\mathsf{h}} - \tilde{v}_e\|_{\mathcal{H}^{1/2}(e)} \le \epsilon_e,$$

then the global error satisfies

$$\|u^{\mathsf{h}} - u^{\mathsf{s}} - I_H u^{\mathsf{h}} - \sum_{e \in \mathcal{E}_H} v_e\|_{\mathcal{H}(\Omega)}^2 \le C_{\text{mesh}} \sum_{e \in \mathcal{E}_H} \epsilon_e^2.$$

Low Complexity: Restrictions of Harmonic Part

Theorem (Y. Chen, T.Y. Hou, Y. Wang, 2021, 2022)

There exist constants C, b, such that for all m, we can find an (m-1)dimensional space $W_e^m = \text{span } \{ \tilde{v}_e^k \}_{k=1}^{m-1}$ so that for any harmonic function v in ω_e .

$$\min_{\tilde{v}_e \in W_e^m} \|v - I_H v - \tilde{v}_e\|_{\mathcal{H}^{1/2}(e)} \le C \exp\left(-bm^{\frac{1}{d+1}}\right) \|v\|_{\mathcal{H}(\omega_e)}.$$

• W_e^m obtained by left singular vectors of the operator $R_e v = v - I_H v$.

• Proof technique combines [Babuska, Lipton 2011] and C^{α} estimates.

Essentially Helmholtz operator resembles an elliptic operator locally.

 $\bullet \ u = u^{\mathsf{h}} + \underbrace{u^{\mathsf{b}}}_{u^{\mathsf{b}}}$

(harmonic-bubble splitting)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

- ∢ ≣ →

★ 3 > 3

part of (II), small

$$u = u^{h} + u^{b}$$
(harmonic-bubble splitting)

$$u^{h} = (u^{h} - I_{H}u^{h}) + I_{H}u^{h}$$
(interpolation part)

$$(u^{h} - I_{H}u^{h})|_{e} = (u^{h}_{\omega_{e}} - I_{H}u^{h}_{\omega_{e}})|_{e} + u^{s}|_{e}$$

э

part of (II), small

$$u = u^{h} + u^{b} \qquad (harmonic-bubble splitting)$$

$$u^{h} = (u^{h} - I_{H}u^{h}) + I_{H}u^{h} \qquad (interpolation part)$$

$$u^{h} = (u^{h} - I_{H}u^{h})|_{e} = (u^{h}_{\omega_{e}} - I_{H}u^{h}_{\omega_{e}})|_{e} + u^{s}|_{e}$$

$$u^{h}|_{e} = \sum_{j=1}^{restriction of harmonic part} part of (II), small$$

$$(u^{h} - I_{H}u^{h})|_{e} = \sum_{j=1}^{restriction sin (I)} + C \exp\left(-bm\frac{1}{d+1}\right) ||u^{h}_{\omega_{e}}||_{\mathcal{H}(\omega_{e})}$$

$$(u^{h}_{\omega_{e}} - I_{H}u^{h}_{\omega_{e}})|_{e} = \sum_{j=1}^{m-1} c_{j}v^{j}_{e} + C \exp\left(-bm\frac{1}{d+1}\right) ||u^{h}_{\omega_{e}}||_{\mathcal{H}(\omega_{e})}$$

$$(basis functions not dependent on f, but on \mathcal{L}_{\theta} \qquad (local, and small)$$

$$(basis functions not dependent on f, but on \mathcal{L}_{\theta} \qquad (local, and small)$$

Section 4

Multiscale Method

	-				
~		100	- NAU	0.0	~
		L a l l	~ ~ ~		ы.
					۰.

Edge Basis for Multiscale Problems

November 28, 2022

 $\exists \rightarrow$

Overall Exponential Accuracy in Approximation

By the local to global error estimate, we have the overall approximation accuracy using $V_{H,m}$ consisting of basis functions in (I):

Theorem (Global Approximation)

$$\min_{v \in V_{H,m}} \|u^{\mathsf{h}} - u^{\mathsf{s}} - v\|_{\mathcal{H}(\Omega)} \le C(C_{\mathrm{stab}}(k) + H) \exp\left(-bm^{\frac{1}{d+1}}\right) \|f\|_{L^{2}(\Omega)},$$

where C is a generic constant independent of k, m, H.

Multiscale Framework for Galerkin Methods

- Handle coarse part $u^{h} u^{s}$ and fine part $u^{b} + u^{s}$ separately. Choose a finite-dim trial space $S \subset V^{h}$, compute locally $u^{b} + u^{s}$, and then:
- find $u_S \in S$ such that $a(u_S, v) = (f, v)_{\Omega} a(u^{\mathsf{b}} + u^{\mathsf{s}}, v)$ for any $v \in S_{\text{test}}$.

•
$$S_{\text{test}} = S$$
: Ritz-Galerkin;
• $S_{\text{test}} = \overline{S}$: Petrov-Galerkin.

Approximation Implies Accuracy

Approximation Ability:

$$\eta^{\mathsf{h}}(S) := \sup_{f \in L^{2}(\Omega) \setminus \{0\}} \inf_{v \in S} \frac{\|u - v\|_{\mathcal{H}(\Omega)}}{\|f\|_{L^{2}(\Omega)}} \quad \text{with} \quad u = N_{k}f.$$
 (6)

Given that $k\eta^{h}(S) \leq 1/(2C_{c}V_{\max})$, for the Ritz-Galerkin method with $\overline{S} = S$, we have Quasi-optimal Approximation:

$$\|u^{\mathsf{h}} - u^{\mathsf{s}} - u_S\|_{\mathcal{H}(\Omega)} \le 2C_c \inf_{v \in S} \|u^{\mathsf{h}} - u^{\mathsf{s}} - v\|_{\mathcal{H}(\Omega)}.$$

Gårding-type inequality for a posteriori estimate.

Vivua	n V	Var	100
I IAUA	11 V	vai	I B.
			-

Edge Basis for Multiscale Problems

November 28, 2022

Ritz-Galerkin Method

Theorem (Galerkin Exponential Accuracy)

Suppose $Ck[(C_{stab}(k) + H) \exp\left(-bm^{\frac{1}{d+1}}\right) + H] \leq 1/(2C_cV_{max})$, then using $S = V_{H,m} + \overline{V_{H,m}}$ in Ritz-Galerkin method leads to a solution u_S such that

$$||u^{\mathsf{h}} - u^{\mathsf{s}} - u_{S}||_{\mathcal{H}(\Omega)} \le 2C_{c}C(C_{\mathrm{stab}}(k) + H)\exp\left(-bm^{\frac{1}{d+1}}\right)||f||_{L^{2}(\Omega)}.$$

- $m \sim \log^{d+2}(k)$ suffices for an exponential rate of convergence.
- $V_{H,m}$ and $\overline{V_{H,m}}$ only differ on the edges connected to the boundary, where Robin boundary conditions make the operator non-Hermitian.

Section 5

Numerical Experiments

Edge Basis for Multiscale Problems

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 November 28, 2022

High Wavenumber Example

• $A = V = \beta = 1$, $k = 2^7$, fine mesh $h = 2^{-10}$, coarse mesh $H = 2^{-5}$.

• Exact solution: $u(x_1, x_2) = \exp(-ik(0.6x_1 + 0.8x_2))$.

Figure: High wavenumber example. Left: $e_{\mathcal{H}}$ versus m; right: e_{L^2} versus m.

High Contrast Example: Mie resonances

$$\Omega_{\varepsilon} = (0.25, 0.75)^2 \cap \bigcup_{j \in \mathbb{Z}^2} \varepsilon \left(j + (0.25, 0.75)^2 \right), \quad A(x) = \begin{cases} 1, & x \notin \Omega_{\varepsilon} \\ \varepsilon^2, & x \in \Omega_{\varepsilon} \end{cases}.$$

$$\beta = 1, V = 1, k = 9.$$

Figure: High contrast example. Left: $e_{\mathcal{H}}$ versus m; right: e_{L^2} versus m.

1

Mixed Boundary and Rough Field Example

Rough media with mixed boundary conditions. (Artificial)

Figure: Left: the contour of A; right: relative errors in the energy norm.

Section 6

Conclusions

Vise	100	\ /\/	0.00	~
_ I X I	La L	~~	. I I I	ы.
				-

Edge Basis for Multiscale Problems

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 November 28, 2022

Summary of the Framework

- **1** Galerkin solution as a quasi-optimal approximation.
- **2** Harmonic-bubble decomposition to avoid non positive definiteness in the whole domain.
- **3** Local nodal/edge basis construction for global error estimate.
- 4 Exponential decay of the error by oversampling method to achieve optimal design.
- **5** Extensive numerical experiments to corroborate the exponential rate of convergence.

31/35

Sketch of Contributions

Our result: on a mesh of lengthscale H = O(1/k), u can be computed by

$$u = \underbrace{\sum_{i \in I_1} c_i \psi_i^{(1)}}_{(I)} + \underbrace{\sum_{i \in I_2} \psi_i^{(2)}}_{(II)} + C \exp(-bm^{\frac{1}{d+1}})$$
 (Energy norm)

b,C constants independent of $H,k.~\psi_i^{(1)},\psi_i^{(2)}$ local support of size H.

•
$$\psi_i^{(1)}$$
 obtained by *local* SVD of \mathcal{L}_{θ}
• $\psi_i^{(2)}$ obtained by solving *local* $\mathcal{L}_{\theta}u = f$
 $\#I_1 = O(m/H^d)$
 $\#I_2 = O(1/H^d)$

- c_i obtained by Galerkin's methods with basis functions $\psi_i^{(1)}$
- (II) = O(H) (Energy norm)
- (I) Galerkin basis are fully offline.

A data-adaptive coarse-fine scale decomposition

Future Work

- Generalization to other non-elliptic (time-dependent) problems, e.g. the Schrödinger equation, where the non-elliptic term could be treated as a perturbation term.
- **2** Generalization to higher-order operators and higher-dimensions.

References

- Y. Chen, T. Y. Hou, and Y. Wang. Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations. 2021. arXiv: 2105.04080 [math.NA].
 - Yifan Chen, Thomas Y Hou, and Yixuan Wang. "Exponential convergence for multiscale linear elliptic PDEs via adaptive edge basis functions". In: *Multiscale Modeling & Simulation* 19.2 (2021), pp. 980–1010.

Thanks!

· · · ·		
Viscian	M/ang	
TIXUAL	vvang	

Edge Basis for Multiscale Problems

November 28, 2022

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

臣