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Multiscale Problem

—V - (AVu)+Vu=f, inQ
u =20, on I}
AVu-v = pu, onlys.

- A, V, B are functions in L*°(€2) and can be rough. 02 =Ty U T

-V = 0: elliptic; V = —k* Helmholtz. Highly oscillatory solutions.

- Multiscale modeling aims at construct offline basis for multi-queries.
- Weak formulation via bilinear form a(u, v); energy norm || - ||4.

Our Contributions

Our result [3]: on a mesh of length scale H, « can be computed by

u=Y ey + Y07 +C exp(—bmi)
€14 €1
(1 (1)

b, C': constants independent of H. wg”, ¢§2)3 local support of size H.

#]1 = O(m/Hd)
#1, = O(1/HY

(Energy norm)

: wm obtained by local SVD of Ly

. 1&(2) obtained by solving local Lyu = f

- ¢; obtained by Galerkin's methods with basis functions zpzm
. (I) = O(H) (Energy norm)

A data-adaptive coarse-fine scale decomposition

For the Helmholtz equation [2], we require H = O(1/k) whereas traditional
FEM needs H = O(1/k?). The constants are independent of k as well.

Approximation and Solution Space

Key observation: Galerkin solution — best approximation in energy norm in the
subspace for elliptic problems with Dirichlet zero boundary condition. Similar
quasi-optimality in approximation holds based on the Garding-type inequality.

*********************************************

Split the solution locally: 3 o

ineach T, u = u} + ub. ? 3
— V- (AVU) +Vulh =0, inT

uh =, on 9T \ T, :

AVl - v = Buf, on 9T N Ty,

V- (AVE) + Vb= f, inT

ud =0, on 9T \ I’y
AV v = puy, on 9T N Ty.

|
***********
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xX E/\/H,e - SH,T c Ty
Merge: For each T, u"(z) = w%(z) and v°(z) = u5(x), when z € T.
Locally decomposed approximation

Goal: approximate u", which corresponds to edge values

Edge Localization
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. Harmonic extension Qg,: maps the edge values @" = u"|g, to u" € HY(Q).
- Nodal interpolation:

€Ny
zﬂi . linear tent functions on Ey and we obtain nodal basis as QEH%.
- Edge restriction: localized edge functions supported on each edge e.
Reu = (u — Iyu)l.
- Local to global estimate:

|Q ey Reu — wel|30) < €,
then the global approximation error satisfies

HQEH(/& o ]Ha) o Z we”g—[(ﬂ) S Omesh Z 627
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Edge Basis via Oversampling

Edge functions on e? g SR -
Oversampling information of : '
harmonic functions in patch w,! €

QEHR@U — QEHRG u?ue T QEHRGBUEJ@ '

— N—— i i
SVD local ; ; N

SVD of the operator Qg, R. from oversampling harmonic functions to edge
functions is exponentially convergent: edge basis {ve ;i }iz1.... m.

|Qe,Reuf, — Y bejvellaue) < Cexp(—bm)||ullp,)

1<)<m

Multiscale Solver with Exponential Accuracy

u=u =Y Y b+ Y u(@)i+ut + Ofexp(—bm ) |ul| )

668}] 1§]§m ZE@ENH

The final approximation, with u" := u® + D et Qr,Reu’, the local online part.

Effective equation for u — u™

a(u —u",v) = (f,v)g —alu",v),

1. We collect Galerkin basis offline: edge basis from local SVD and nodal basis.

2. Everytime for a new right-hand side, we compute local online part «".

3. We solve the effective equation for u — u" via Galerkin method.
4. Exponential accuracy of combined solution by quasi-optimal approximation.

Numerical experiments
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Figure 1. Left: the contour of A; right: relative error in energy norm versus m.

Example: Helmholtz equation with rough coefficients, mixed boundary
condition and high wavelength k& = 2°. Coarse mesh H = 27

Generalizations

Generalization to 3D problems

Nodal, edge and face basis. Exponential efficiency is established theoretically.

Generalization to time dependent problems

Schrodinger equations using ExpMsFEM in space coupled with appropriate time
discretizations; also other time dependent problems.

Data driven model reduction

Operator learning to solve local problems efficiently.
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