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Introduction

* Physics-informed neural operator (PINO) shows empirical promise for learning PDESs.

» Underlying Fourier neural operator (FNO) architecture improves over PINNSs.

» FNO Fourier series representation enables exact gradient computation in frequency space.
 FNO has the expressivity to learn nonperiodic functions, but derivative computations are ill-
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conditioned, leading to poor optimization behavior.  Want to use Fourier series to take derivatives with high accuracy.
* We use Fourier continuation (FC) for exact gradient computation on nonperiodic functions. - Fourier series is only well-defined for periodic functions (Gibbs phenomenon in nonperiodic case).
« Three PINO models using FC are tested on a 1D problem and outperform padded PINO. . Want to extend nonperiodic model output to a periodic function.

« Padding (extend domain and ignore the extra part during optimization) is a partially observed

_ _ optimization problem, which is ill-conditioned because we use discrete Fourier transforms.
Physics-Informed Learning :

Alternative: deterministic continuation methods.
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* Model outputs on the base domain, then we extend afterward using a fixed algorithm.
D

Fourier Continuation
Physics-informed learning uses the differential equation itself to define loss, enabling learning

with no solution data.
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* Alternative architecture to neural networks.
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Image adapted from [1].

« PINO is neural operator trained on physics-informed loss. « We use FC-Gram continuation function.
- Each Fourier layer consists of a matrix, an integral kernel operator, and an activation  FC-Gram interpolates gridpoints near the boundary by trigonometric polynomials that are
function. periodic on an extended domain, which produces a continuation.

This interpolation has very small error when compared against the original function on the
base domain.

« For FNO, integral kernel operators are linear transformations in frequency space. *

Adding Fourier Continuation to PINO
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Three candidate models (from left to right: models 1, 2, 3) that incorporate Fourier continuation into PINO.

Light green highlighted regions indicate where Fourier continuation is used. Entering a green highlighted
region means applying FC, and exiting a region means truncating to the base domain.

Baseline Models

For comparison, we also show results of two baseline models. The first uses a padded domain,
and the second uses PINO with the exact gradient method with no domain extension at all.

Empirical Results: Self-Similar Burgers’ Equation
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» Train each model on the self-similar Burgers’ equation (shown on the right).
* This is a 1D ODE with nonperiodic solution.
» For some values of A, the solution is nonsmooth: third-order derivative has a cusp at zero.

» Each pair of figures shows the results of a model trained on the self-similar Burgers’
equation with A=0.4 (left) and A=0.5 (right). A=0.4 corresponds to a nhonsmooth solution.

« To make the performance differences visually apparent, these plots show the third derivative
of each model output.
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From both the plots and the loss values shown in the table, model 1 performs the best on both
A=0.4 and A=0.5.

Theoretical explanation: In models 2 and 3, the Fourier layers of PINO act on an extended
domain, but only the base domain [-2, 2] is observed during optimization. Thus models 2 and 3
produce partially observed optimization problems, and hence are ill-conditioned, so we expect
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21 4 Equation loss L? loss
21 3 A=04 A=05|A=04 X=0.5
1 ] Model 1 (FC only at the end) 10-8%4+ 10°77 | 1076t 1076
: | Model 2 (FC in each Fourier layer) 10-65  10-73 | 1061 1060
Model 3 (FC after P, truncation before Q) | 10—°°  10-%¢% | 10=¢1t 107690
o e e o o e e e e e e Baseline 1 (PINO on padded domain) 10-25 10739 | 10753 1056
Baseline 2 (PINO with no continuation) 1023 10723 | 1079  1079°

[1] Albin, N. & Bruno, O. P. A spectral FC solver for the compressible Navier—Stokes equations in general
domains I: Explicit time-stepping. Journal of Computational Physics 230, 6248-6270 (2011).

[2] Wang, Y., Lai, C.-Y., Gobmez-Serrano, J. & Buckmaster, T. Asymptotic self-similar blow up profile for 3-D
Euler via physics-informed neural networks. arXiv:2201.06780 [physics] type: article (Mar. 2022).




