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• Physics-informed neural operator (PINO) shows empirical promise for learning PDEs.

• Underlying Fourier neural operator (FNO) architecture improves over PINNs.

• FNO Fourier series representation enables exact gradient computation in frequency space.

• FNO has the expressivity to learn nonperiodic functions, but derivative computations are ill-

conditioned, leading to poor optimization behavior.

• We use Fourier continuation (FC) for exact gradient computation on nonperiodic functions.

• Three PINO models using FC are tested on a 1D problem and outperform padded PINO.

Introduction Nonperiodic Functions & Ill-Conditioning

Three candidate models (from left to right: models 1, 2, 3) that incorporate Fourier continuation into PINO.

Light green highlighted regions indicate where Fourier continuation is used. Entering a green highlighted 

region means applying FC, and exiting a region means truncating to the base domain.
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• Want to use Fourier series to take derivatives with high accuracy.

• Fourier series is only well-defined for periodic functions (Gibbs phenomenon in nonperiodic case).

• Want to extend nonperiodic model output to a periodic function.

• Padding (extend domain and ignore the extra part during optimization) is a partially observed 

optimization problem, which is ill-conditioned because we use discrete Fourier transforms.

• Alternative: deterministic continuation methods.

• Model outputs on the base domain, then we extend afterward using a fixed algorithm.
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Fourier Continuation for Exact Derivative Computation

in Physics-Informed Neural Operators

Physics-Informed Learning

Physics-informed learning uses the differential equation itself to define loss, enabling learning 

with no solution data.

Neural Operators

• Alternative architecture to neural networks.

• PINO is neural operator trained on physics-informed loss.

• Each Fourier layer consists of a matrix, an integral kernel operator, and an activation 

function.

• For FNO, integral kernel operators are linear transformations in frequency space.

Fourier Continuation

Image adapted from [1].

• We use FC-Gram continuation function.

• FC-Gram interpolates gridpoints near the boundary by trigonometric polynomials that are 

periodic on an extended domain, which produces a continuation.

• This interpolation has very small error when compared against the original function on the 

base domain.

Empirical Results: Self-Similar Burgers’ Equation

• Train each model on the self-similar Burgers’ equation (shown on the right).

• This is a 1D ODE with nonperiodic solution. 

• For some values of λ, the solution is nonsmooth: third-order derivative has a cusp at zero.

• Each pair of figures shows the results of a model trained on the self-similar Burgers’ 

equation with λ=0.4 (left) and λ=0.5 (right). λ=0.4 corresponds to a nonsmooth solution.

• To make the performance differences visually apparent, these plots show the third derivative 

of each model output.

From both the plots and the loss values shown in the table, model 1 performs the best on both 

λ=0.4 and λ=0.5. 

Theoretical explanation: In models 2 and 3, the Fourier layers of PINO act on an extended 

domain, but only the base domain [-2, 2] is observed during optimization. Thus models 2 and 3 

produce partially observed optimization problems, and hence are ill-conditioned, so we expect 

gradient descent to be comparatively ineffective.

Baseline Models

For comparison, we also show results of two baseline models. The first uses a padded domain, 

and the second uses PINO with the exact gradient method with no domain extension at all.
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Adding Fourier Continuation to PINO


