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FPL Equation

Section 1

FPL Equation
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FPL Equation
Boltzmann and FPL Equation

Boltzmann equation:

SV 0h) = [N~ Fef@)Bllgl Ydxdnde (1)

Fokker-Planck-Landau equation:

86{+v:l:('vf)zg[f]a t€R+7 .’I?E]R3, ’UER3, (2)

QU ®,v) =V - [ A(v —v.)(f(0:) Vo f(v) = f(0) Vo, f(vs)) dvs,

RB
(3)
where A(v) = ¥(|v|)II(v), IL;;(v) = 6;j — 2, U(|jv]) = Ajo[7 T2

BRCIE
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FPL Equation

FPL Equation as a Limit Case

Vi

When all collision becomes grazing, i.e, the collision angle tends to zero.
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FPL Equation

Parameter ~

Different choice of v leads to different models.
v > 0: “hard potential”
v < 0: “soft potential”
v = 0: “Maxwell molecules”
v = —3: Coulombian case

Domain of definition: «v > —5. Small «y leads to singularity.
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FPL Equation

Numerical Methods

Monte-Carlo Simulation
Discrete Velocity Methods
Fourier Spectral Methods
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Hermite Spectral Method

Section 2

Hermite Spectral Method
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Hermite Spectral Method

Linear FP and Hermite Diagonalization

For the Maxwell molecules with A = 1, if the distribution function f is
radially symmetric, which is to be preserved under time evolution,

Qlinear| f] — 9V, - (Vf + fv), (4)

+00
Qinear(f] = 3 QI fo(v)M(v), QI = (D - 1)[alfa. (5)

=0
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Hermite Spectral Method

Local Maxwellian and Frame of Reference

Steady state solution, homogenous case:

a2
f(oo,v) = Mp 4 9(v) := Wexp <\’uu|> , (6)

where the density p, velocity w and temperature 6 can be obtained by

p= [ stwrde, w= [ ofto)do, o= [ o-uP o)

Non-dimensionalization

p=1, u=0, 6=1, (7)
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Hermite Spectral Method

Series Expansion

Series expansion in the weighted L? space F = L?(R3; M~!dv):
+oo
ftv) = falt)H(0)M(v), (8)
|| =0
Hermite polynomials:

(1 ol
M) o ovgang 1) ©)

H(v) =
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Hermite Spectral Method

Moments

The relationship between the coefficients f, and the moments can be
derived from the orthogonality of Hermite polynomials

He (v)HP (v)M(v) dv = 6, g, (10)
R3
Therefore,
1
fom oy [ How)F(w)dv, (11)
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Approximation of Quadratic Collision Term

Section 3

Approximation of Quadratic Collision Term
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Approximation of Quadratic Collision Term Construction of Model

Series Expansion of the Collisional Term

“+o0o
W) = Y. QuH*(w)M(v). (12)
|ar|=0
1 +oo +oo
Qo= / H@)Qflw)dv =Y 3 A fif,  (13)
' IA|I=0 |x|=0

Ai’m = i| H*(v)V, - dv. dvA(v — vy)
Q. JRr3 R3

() M(0) Vo (H () M(v)) ~ @) M(©) Vo, (H*(0)M(22)) ).
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Approximation of Quadratic Collision Term Construction of Model

Variational Perspective

Galerkin spectral method:
Fu = span{H*(v)M (v)|a € Iy} € F = L*(R® M~ Ldv), (14)

where Iy = {(a1, a2, a3)[0 < |a] < M,o; € N;i=1,2,3}. Then the
semi-discrete discrete function fas(t,-) € Far satlsfles

/R3 652/[ M~ d'v—/ Q(fas famr)pM™ L do, Vo € Fyr. (15)

Suppose
=) fa() H*(v)M(v) € Fir. (16)

aElys
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Approximation of Quadratic Collision Term Construction of Model

Model Reduction for the Quadratic Operator

The variational form (15) is equivalent to the following ODE system:

dfa = > ) AV hfe  aclu (17)

ANeIn KET N

To reduce the time and storage cost, the coefficients Aé’” for a small

number My are computed and stored. When a & I, we apply the linear
model,
dfa

wr = —(D —1)|a|fa, ad Iy (18)
Combining (17) and (18), we actually get a new collision operator
QUIf] = PuQPuf] = Q"I = P)fl,  ¥feF,  (19)

where Py is the orthogonal projection from F onto Fyy.

Model Reduction For FPL May 16,2020 16,44



Approximation of Quadratic Collision Term Construction of Model

The Novel Model

dfe  m
dt - Qa 9 (20)

where

S ANt a€ I,

Qg/f = Aelng k€l (21)
—(D = )| fas otherwise.

Simplified models with higher accuracy can be chosen, for example, the
linearized Boltzmann operator
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

Now we need to simplify the expression of the coefficients AN

3 |o-1

Axn =glrts-lad/2 3 Z Pl ( mhe g *”~+6t) B (7, 5,1),

p,rl
s,t=1 |p|=0

where p = (p1,p2,p3)" is a three-dimensional multi-index and

q[S]:oz—es—p, r[t]:)\+/§+et—p, apq Hap:(’;j, s,t=1,2,3.
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

The coefficients a) and Bj(v, s, t) are defined by

min(p,A)

aF = 2~ (P+a)/2 141 Z (—1)7 s (22)
H o slA=s)l(p — s)l(g— A+ s)V
s=max(0,p—k)
and ,
Bi(y,s,t) = =Gst(7,0,0) + 05t Y_ Grr (7,0, 9), (25)
r=1

where

Gulrpa) = | lala.ll@)H'@)M(g)dg. st =123

gc

(26)
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

Singularity

We are left with the task to simplify Gs:(v,p,q). Permutation symmetry
would require us only to compute for s =t =1, and s =1,t = 3.

When v > —3, it can be computed directly by the recursive formula
of the Hermite Polynomials.
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

Singularity

We are left with the task to simplify Gs:(v,p,q). Permutation symmetry
would require us only to compute for s =t =1, and s =1,t = 3.

When v > —3, it can be computed directly by the recursive formula
of the Hermite Polynomials.

For the Coulombian case v = —3, the recursive formula can not be
adopted directly due to the singularity induced by the small value of ~.
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

Singularity

We are left with the task to simplify Gs:(v,p,q). Permutation symmetry
would require us only to compute for s =t =1, and s =1,t = 3.

When v > —3, it can be computed directly by the recursive formula
of the Hermite Polynomials.

For the Coulombian case v = —3, the recursive formula can not be
adopted directly due to the singularity induced by the small value of ~.

We will introduce the Burnett Polynomials to deal with the super
singularity for v > —5.
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

The normalized form of the Burnett polynomials is

21_6‘171'3/2@3! (G1+1/2) "1)‘2 A A v
Ba(v) = L ) jul*yee [ —
a(v) \/F(OAQ) _‘_@1 +3/2) a3 < 2 > |U| aq <"U‘> )

Hermite polynomials in is expressed by a linear combination of the Burnett
polynomials, precisely

H*v)= > C&Ba(v), &= | Ba(w)H*(v)M(v)dv, (27)
R3

la|p=|al

where |&|p = &1 + 243. The coefficients could be derived explicitly by the
orthogonality of Burnett Polynomials.
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

When v > =5, G (7, p, q) defined in (26) can be simplified as

Gst(’}/vpv _2’Y+2 Z Z CII;C;I 5;?‘113

|5l5=Ip| |4 5=l4|

+h+a+3 . 1. 1.
K(%,pl""_,QI‘i‘i,p&qg FSt(p17p27q1,q2),

2
(28)

where

Fou(pr, p, 1, @2) = /SznsntYﬁ’?(n)Kff(n)dn, st=1,2,3, (20)
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

The parameters in (28) are defined as

Dlll2 _ n1!n2!
mnz F(nl + 1+ 3/2)F(n2 + 1l + 3/2)

and

Ko = om0 (479 (425) (7))

1=0
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Approximation of Quadratic Collision Term Explicit Expression of the Coefficients

Finally, with n/’ defined as

[+ (201, — D)m 4 61,][l — (261, — )m + 01,/
2lul(20 — 1)(21 + 1) '

N =
Fi3(ly,mq,la,ma) and Fi3(l1, m1,l2, ma) equal respectively

( m2+1 Z (- 1)1 ——— 1) s
f n50k+( 1)kl27m27]( 1)3l14+6805,m1 L1 +061k—0815,l2—01x+615°
k,j,0=0,1

Z 0o ML, —ma
n50k+ kl2 m2?7(—1)7l1+50j,m1 l1+51k—51]',12—51k+51j'
k,j=0,1
(30)

Thus we obtain the explicit expressions.
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Numerical Examples

Section 4

Numerical Examples
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Numerical Examples

We perform numerical experiments on BKW solution, Bi-gaussian data,
and the Rosenbluth Problem. We choose ~ to be 0, —3, —4.9 respectively.

/A

1/
4 HAN | L AN

J(a)t;O.Oll 5 (b)t_002 5 (c) t =0.06

Figure: Marginal distribution functions g(t,v1) for My =5 and 15 at ¢ = 0.01,
0.02 and 0.06. The red solid lines correspond to the exact solution, and the blue
dot dashed and black dashed lines correspond to the numerical solutions with

My = 15 and 5 respectively.
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Numerical Examples

Bi-Gaussian

(a)t=0.4,M0=5 (b)t=1,M0:5 (C)t:3,M0:5
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Rosenbluth

Numerical Examples

04 04 04
My =5 / My=5 N\
05 /\\ v 0ss y \ el o /N
s / My =15 03 / —My=15 03 / \
/ \ / \ / \
025 / \ 025 /( \ 025 // \
02 / \ 02 // \\ 02 / \
/ \ / \ ( \
o1 / 015 / \ 01 / \\
0.1 01 / 0.1
005 /m@ \ 005 /035 005 \
- : mgg
e e N NI
s 3 3 s s 0 3 s s B 5
(Qt:&4 (h) t = 0.6 mtzz

Figure: The Coulombian case v = —4.9. Marginal distribution g(¢,v;) functions

at different times.
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Numerical Examples

Conclusions

Hermite spectral method to capture moments accurately;
macroscopic features preserving.
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Numerical Examples

Conclusions

Hermite spectral method to capture moments accurately;
macroscopic features preserving.

Combination with linear operator for model reduction.
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Numerical Examples

Conclusions

Hermite spectral method to capture moments accurately;
macroscopic features preserving.

Combination with linear operator for model reduction.

Burnett Polynomials for singular parts in the simplification of exact
coefficients.
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Numerical Examples

Future Work

Numerical tests for the full FPL equation with spatial variables.

Numerical approximation of the collision operator to FPL equation
coupled with Maxwell equation, Vlasov-Poisson equation, etc.

Boundedness property of the collision operator in the energy norms

Convergence and stability of the nonlinear spectral method would
follow from the boundedness property.

Model Reduction For FPL May 16,2020 30,44



Convergence for Nonlinear Kinetic Equations

Section 5

Convergence for Nonlinear Kinetic Equations
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Convergence for Nonlinear Kinetic Equations
Variational Formulation

Exact solution f, truncated space Fjs, projection on Fas: far, numerical

solution far, unr = favr — fm
Evolution for fas:

of A
o = Pualf), (31)
Variational formulation:
0 0 —
291 o) = () + Glo) + (PLLZD g g e

where H(-) = (Q(far, fur) — Q(fars far), ),
G(-) = (Q(f, f) = Q(fm, fm), ).
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Convergence for Nonlinear Kinetic Equations

Nonlinear Evolution Problem

ou
(59 =H(@)+Glg) Vg€ Fu
Insert g = uyy, then
L0 st = H(ur) + Glunr) (32)
2875 (37 — Up Up
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Convergence for Nonlinear Kinetic Equations

Spectral Accuracy of the Projection

If f € H"(RYN; M~'dv), there exists a constant c independent of f, such
that

far = fI < eM™ N2 (],
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Convergence for Nonlinear Kinetic Equations

Convergence for Bounded Kernel

If the collision kernel has the following boundedness of the norm (for
example, Boltzmann collision operator with compactly supported kernel,
linear Boltzmann operator):

N, oIl < 1111l (33)

\H (unr)| < |Jun|[[|Qfar — fory far) + Q(Fars far — fur)l] (34)
< Cllunr[|[lunr |1 FI] + [luarl]) (35)

Similarly,

|G (un)| < [umll|QUf = fars £) + QUfnrs f = fu)ll (36)
< CllumlIlf = FarlICILFID (37)
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Convergence for Nonlinear Kinetic Equations

Convergence for Bounded Kernel

9 v
[l luarlll < 2 unglILF1]+ 2C uarl 2 + 2eCI ALY/ (38)

2 v
|5 lundlll < Cllunll + e M Nr/2 (39)
where Cy = 2C[|| f[|[[zee + 2C, ¢ = 2¢C||[[f[[|| Lo [I[| f]]#]| oo

CfM—Nr/Q

[luar]] < exp(Cyt)(6 + )
f c;
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Convergence for Nonlinear Kinetic Equations

Convergence for Bounded Kernel

The following cases can be categorized to have the stated boundedness
property of the norm:

Collisional Kernel with compact support,

Linearized Collisional Operator.
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Convergence for Nonlinear Kinetic Equations

General Case: Potential ideas

In general, the boundedness of the collision kernel is false. (Boltzmann
kernel with unbounded radial part)

The residual part G: proceed as prevjous[y.

Collision part H: (Q(fa, fa) — Q(f s, far), wnr).

In general, we can get [|Q(f, 9)|| < [|fllallg]la.- We need to invoke a
certain coercivity to compensate the increase of the index a.
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Convergence for Nonlinear Kinetic Equations

General Case: Coercivity of the linearized collision kernel

One way is to put Q = Qinear + Qres-

/ Ly dMdv z(:o/ H*\(Jv]) M dv (40)
R3 R3
S o) < M) < a1+ o) ()

for Boltzmann hard potential with v < 1. Where Ly = —Qiinear
Therefore, we only need to show

(Qres(fM) - Qres(fM)vuM) < 5HUM||’Y + 0(5)||UMH
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Numerical lllustrations with inhomogeneous equation

Section 6

Numerical lllustrations with inhomogeneous equation
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Numerical lllustrations with inhomogeneous equation

Two Stream

(a)t=0
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Numerical lllustrations with inhomogeneous equation

Bump-on-tail
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Numerical lllustrations with inhomogeneous equation
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Numerical lllustrations with inhomogeneous equation

Thanks!
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