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Helmholtz Equation

Section 1

Helmholtz Equation
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Helmholtz Equation

Setting of Helmholtz Equation

Helmholtz equation with mixed boundary conditions:

—V - (AVu) — k2V?u = f, in Q,
u=0, onI'p, (1)
AVu-v =Tiu, on 'y UDR,

where Amin < A(f) < Amax: /Bmin < 6(56) < Bmax: Vmin < V(l‘) < Vmax|
Tou =0 for x € T'y, and Tpu = ikSBu for x € I'g.

m Bilinear form:
a(u,v) := (AVu, Vo) — B2 (VZu,v)q — (Teu, v)ryorg.  (2)
m Associated norm:

il = /Q AVl + B2 |Vul. 3)
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Helmholtz Equation

Applications of Helmholtz Equation

Wave mechanics
Electrostatics
Seismology

Acoustics

] = =

‘fj \ \:Q/
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Helmholtz Equation

Pollution Effect

|. Babuska, SINUM 1997.
m Mesh size sufficient to address the wave length: O(1/k).

m For standard FEM: h = O(1/k?).

m Ideal method: H = O(1/k)!

m hp—FEM with local polynomial of order O(log k). Melenk, Math.
Comp., 2011.

m Localizable orthogonal decompositions (LOD) with basis of support
size O(H log(1/H)). Peterseim, Math. Comp., 2014.

m Multiscale edge basis with exponential rate of convergence.

m A later work: Partition of unity method (PUM) with exponential rate
of convergence. Ma, 2021.

m Fast solver with preconditioner: Ying, CPAM, 2011.
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Helmholtz Equation
Sketch of Contributions

Our result: on a mesh of lengthscale H = O(1/k), u can be computed by

U= Z ciwgl) + Z wl@) +C exp(—bmﬁ) (Energy norm)
i€l 1€l
) (1

b, C constants independent of H, k. wgl),q/)?) local support of size H.
(] %(1) obtained by local SVD of Ly #I, = O(m/H?)
[ @DZ@) obtained by solving local Lyu = f #I, = O(1/H?)
m ¢; obtained by Galerkin's methods with basis functions 1/11-(1)
m (II) = O(H) (Energy norm)

A data-adaptive coarse-fine scale decomposition
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Helmholtz Equation

Continuity Estimate and Stability

m Continuity estimate:
|a(u, v)| < Cellulla@llvline- (4)

m Stability: Let Ny f := u be the solution operator.

Ny f
sup w =: Cgtab < O0. (5)

rerznfoy 122

Assumption on the stability constant: Cgi.p, < Cok®.
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Coarse-Fine Scale Decomposition

Section 2

Coarse-Fine Scale Decomposition
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Coarse-Fine Scale Decomposition

Detour on Elliptic PDEs

m Problem formulation:

— V- (aVu) = f, inQQ,
u=0, on 9.

Q=10,1]? and u € H}(Q), f € L*(Q2).
m Galerkin methods: choose a finite-dim space Viy C H}(Q):
Find ug € Vg such that /QaVuH-Vv = /va for any v € Vj.
Optimality: (notation ||ul| g1 () = [ alVul?)
v —unlgiq) = viel%/fH |w = vl 1(0)-

Vi needs to approximate the solution space well in the H1(2) norm.
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Coarse-Fine Scale Decomposition

Explore the Solution Space

m Mesh structure:

nodes, edges and elements. i e Rt
. | R
m Split the solution locally: :, e r o - .
ineach T, u = u% + u%. | : T :
‘F — -1 _ I
| | her‘J |

|

|
|

{—V (AVUD) — K2V2ub =0 in T

|
wh=wondl, _ _ 1 ___1___

| |
V- (AVU) —E*V2ub = f in T | | |
ud =0 on or. ~ "~
x ENH,e ESH,TG T
m Merge: For each T, uM(z) = ub.(z)

and u®(x) = ub(x), when z € T
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Coarse-Fine Scale Decomposition

Coarse-fine Scale Decomposition

m Poincaré inequality: |[v||p2(7) < CpH||Vvl| 2.

m Mesh assumption: H < Arlr{ii/(\/QCmeaxk).

m Decomposition: u = u" +uP € VM + Vb,

Vhi={v e H(Q): =V - (AVv) — k*V?v =0 in each T € Ty,
AVv-v =Tyv, on 'y UTR}  (harmonic part)
VP:={veH(Q):v=0o0neach ec Ey} (bubble part)

|
For v € VM and w € V?, it holds that a(v,w) = 0.

This decomposition makes sense by the C estimate of the solution.
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Coarse-Fine Scale Decomposition

Small Bubble Part

Bubble part is local and small:
m Jocal: ub = Diert 1/12-(2) (part of term (II)),
each 1/}2-(2) solves an elliptic equation inside each T

m small: elliptic estimate,

3C’p
HubHH( = A1/2 HHfHL2

min

i.e. u” oscillates at a frequency larger than O(1/H).

|
Bubble part is the fine scale part.
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Coarse-Fine Scale Decomposition

Approximation of Harmonic Part

Observation: V" is isomorphic to an edge space:

Vhi={veH(Q): =V - (AVv) — k*VZ =0 in each T € Ty,
AVv-v =T, on 'y UTR}

Functions in V", locally solving Helmholtz-harmonic problems, only depend
on values of v on edges.

|
Galerkin's solution ug now only approximates the harmonic part.
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Exponentially Efficient Edge Basis

Section 3

Exponentially Efficient Edge Basis
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Exponentially Efficient Edge Basis

Localization to Edge Functions

m Edge function: u" : Q — R restricted to edges: 4" : By — R.

|
Task: find edge basis functions to approximate @".

m Localization to each edge: (@M — Igi")|. vanishes at nodal points
where Iy is nodal interpolation operator, e.g., by linear tent functions.

|
Next: find edge basis functions to approximate (" — Iz@")|. for each e.

The edge residual R.a" := (" — Iza")|. lies in the Lions-Magenes space,

i.e. functions v € H'/?(e) s.t. % € L%(e), by the C® estimate.
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Exponentially Efficient Edge Basis

Local Approximation via Oversampling

m Oversampling: ¢ Cw. :=J{T € Ty : T Ne # 0}.
one: ul — Iyu = (u‘t‘,e - IHuge) + (uge - IHUE;e)~
h b

ug, , ug, - oversampling harmonic / bubble part.

We?

m Special harmonic function: u® € V" is a special harmonic function
such that its restriction on each edge e € Ey equals 1128 — IHﬁBE
Recall the definition:

{—V-(AVu[‘UE) V2, =0 inwe i i We
uf, =u on@we,____:L'r____
{—v.(Avuge) V2 = f in we ! !
ug, =0 on Jwe:! ; ; -

Next: Restrictions of harmonic part are of low complexity!
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Exponentially Efficient Edge Basis

Local Norm for Approximation

m The #!/%(¢) norm: (connect back to energy norms)
10131200 = [ AIVEI? + VY.
() 0

where 9 is the harmonic extension of ¢ to neighboring elements.

Theorem (Edge Coupling)
If on each edge, there is U, such that the local error satisfies

||ilge = IHﬂlle - 176”;.[1/2(6) < €e,

then the global error satisfies

|ulh — u® — Tyuh — Z UeH?H(Q) < Chnesh Z 2.

eEEy ecfy
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Exponentially Efficient Edge Basis

Low Complexity: Restrictions of Harmonic Part

There exist constants C, b, such that for all m, we can find an (m — 1)
dimensional space W™ = span {t¥}7"-/' so that for any harmonic function
v in We,

: ~ 1
min [v = Irv — Tellya/2) < Cexp (—bmd+1> 9113 (we)-

TeEW]

m W] obtained by left singular vectors of the operator Rev = v — Igwv.
m Proof technique combines [Babuska, Lipton 2011] and C* estimates.

m Essentially Helmholtz operator resembles an elliptic operator locally.
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Exponentially Efficient Edge Basis

Summary of Approximations

part of (II), small

mou=u+ u (harmonic-bubble splitting)
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Exponentially Efficient Edge Basis

Summary of Approximations

part of (II), small

=~
mou=u+ uP (harmonic-bubble splitting)
localized to each edge  basis functions in (1)
—— —~ =
m ot = (W —Iguh) 4 Tgu (interpolation part)
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Exponentially Efficient Edge Basis

Summary of Approximations

part of (II), small

=~
mou=u+ uP (harmonic-bubble splitting)
localized to each edge  basis functions in (1)
—— —~ =
m ot = (W —Iguh) 4 Tgu (interpolation part)
restriction of harmonic part  part of (1), small
——
h h h h
m (= Igut)le = (up, —Igug)le + 0wl
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Exponentially Efficient Edge Basis

Summary of Approximations

part of (II), small

=~
mou=u+ uP (harmonic-bubble splitting)
localized to each edge  basis functions in (1)
—— —~ =
m ot = (W —Iguh) 4 Tgu (interpolation part)
restriction of harmonic part part of (Il), small
—_—
h h
m (u = TguM)le = (ug, —Inul)le + Wl
basis functions in (1)
—_——~—
m—1 L
w @l Igl)le= Yo el +Cexp (<bma ) lul e
i=1
(1) basis functions not dependent on f, but on Ly (local)
(I1) bubble part and special harmonic function (local and small)
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Multiscale Method

Section 4

Multiscale Method
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Multiscale Method

Overall Exponential Accuracy in Approximation

By the local to global error estimate, we have the overall approximation
accuracy using Vg ., consisting of basis functions in (I):

Theorem (Global Approximation)

_1
min_[[u" - w* = vllyg) < C(Cuan(k) + H) exp (~bm7) |1f] 20,

’UEVH,m

where C' is a generic constant independent of k,m, H.
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Multiscale Method

Multiscale Framework for Galerkin Methods

Handle coarse part u" — u® and fine part uP + u® separately.
Choose a finite-dim trial space S C V", compute locally u° + u*, and then:

findug € S such that a(ug,v) = (f,v)a—a(u®+us,v) for any v € Sie.

B Siest = S: Ritz-Galerkin;
B Siest = 9: Petrov-Galerkin.
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Multiscale Method

Approximation Implies Accuracy

m Approximation Ability:

u—v
n"(S):= sup inf m

with  u = N f. 6
rerzn{oyv€S I fllzz ©)

m Given that kn"(S) < 1/(2C.Vinax), for the Ritz-Galerkin method with
S =S, we have Quasi-optimal Approximation:

i = = usliny < 2 o e = = vlzgey

|
Garding-type inequality for a posteriori estimate.
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Multiscale Method

Ritz-Galerkin Method

Theorem (Galerkin Exponential Accuracy)

Suppose Ck[(Cstan (k) + H) exp (—bmcﬁl) + H] <1/(2C.Viax), then

using S = Vi m + Vim in Ritz-Galerkin method leads to a solution ug
such that

_1
" — u® = wsllpe) < 2CC(Cotan(k) + H) exp (—bmiT ) | fll(q) -

m m ~ log?*2(k) suffices for an exponential rate of convergence.

® Vi, and Vi, only differ on the edges connected to the boundary,
where Robin boundary conditions make the operator non-Hermitian.
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Numerical Experiments

Section 5

Numerical Experiments
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Numerical Experiments

High Wavenumber Example

mA=V=p3=1,k=27, fine mesh h = 2710 coarse mesh H = 275.

m Exact solution: u(z1,x2) = exp(—ik(0.6z1 + 0.8x2)).
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10
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure: High wavenumber example. Left: ey versus m; right: er2 versus m.
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Numerical Experiments

High Contrast Example: Mie resonances

1, ¢
0. =(0.25,0.75)* N | ) e (j + (0.25,0.75)%) , A(x) =< , S
Ry g4, x € Q..
JEZ
B=1,V=1k=0.
A (.

m

Figure: High contrast example. Left: ey versus m; right: er2 versus m.
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Numerical Experiments

Mixed Boundary and Rough Field Example

Rough media with mixed boundary conditions. (Artificial)

0 0.2 0.4
e

Figure: Left: the contour of A; right: relative errors in the energy norm.

Edge Basis for Multiscale Problems November 28, 2022

Rough A(x) i 10°
3
25 § 2
510
>
805 2 g
=
|
. L5
: -4
1
- . 0 —O-Ritz
. —¢— Petrov
m o | 1 2 3 4 5 6 7

29/35



Section 6

Conclusions
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Conclusions

Summary of the Framework

Galerkin solution as a quasi-optimal approximation.

Harmonic-bubble decomposition to avoid non positive definiteness in
the whole domain.

Local nodal/edge basis construction for global error estimate.

Exponential decay of the error by oversampling method to achieve
optimal design.

Extensive numerical experiments to corroborate the exponential rate of
convergence.
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Conclusions
Sketch of Contributions

Our result: on a mesh of lengthscale H = O(1/k), u can be computed by

u= Z c“/;i(l) + Z ¢§2) +C exp(—bmﬁ) (Energy norm)
el i€l
—_—
0 (m
b, C constants independent of H, k. wf),qpf) local support of size H.

m %(1) obtained by local SVD of Ly #I, = O(m/H?)
" v,bZ@) obtained by solving local Lou = f #I, = O(1/H?)
m ¢; obtained by Galerkin's methods with basis functions wgl)
m (II) = O(H) (Energy norm)
m (1) Galerkin basis are fully offline.

A data-adaptive coarse-fine scale decomposition
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Conclusions

Future Work

Generalization to other non-elliptic (time-dependent) problems, e.g.
the Schrédinger equation, where the non-elliptic term could be treated
as a perturbation term.

Generalization to higher-order operators and higher-dimensions.
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Thanks!
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