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Kolmogorov-Arnold Representation Theorem

For a smooth f : [0, 1]n → R

f (x) = f (x1, · · · , xn) =
2n∑

q=0
Φq(

n∑
p=1

φq,p(xp)). (1)

where φq,p : [0, 1] → R and Φq : R → R are continuous.

Summing and composition of univariate functions. Potentially address the curse of dimensionality

(COD).

Φq and φq,p not necessarily smooth. In practice we may need more than two layers (but normally it

suffices with two layers).

Kolmogorov–Arnold Networks (KANs)
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f(x) ≈
N(ϵ)

∑
i=1

aiσ(wi ⋅ x + bi) f(x) =
2n

∑
q=0

Φq

n

∑
p=1

ϕq,p(xp)
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MLP(x) = (W3 ∘ σ2 ∘ W2 ∘ σ1 ∘ W1)(x) KAN(x) = (Φ3 ∘ Φ2 ∘ Φ1)(x)

W1

σ1

W2

σ2

W3 Φ3

Φ2

Φ1
x x

MLP(x) KAN(x)

linear,  
learnable

nonlinear, 
fixed nonlinear, 

trainable

(a) (b)

(c) (d)

We parametrize the learnable activation functions by B-splines.

Approximation Theory

Suppose that a function f (x) admits a smooth representation
f = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x , (2)

where Φl,i,j are smooth with derivatives uniformly bounded up to k + 1-th order. Then using k-th order
B-splines with G + 1 grid points as activation functions, there exist ΦG

l,i,j such that for any 0 ≤ m ≤ k, we

have the bound

‖f − (ΦG
L−1 ◦ ΦG

L−2 ◦ · · · ◦ ΦG
1 ◦ ΦG

0 )x‖Cm ≤ CG−k−1+m . (3)

In particular for L2 or RMSE, we have the scaling table

Paper Idea Scaling exponent α

Sharma & Kaplan [5] Intrinsic dimensionality (k + 1)/d

Michaud et al. [2] maximum arity 1

Poggio et al. [3] compositional sparsity m/2
Ours K-A representation k + 1

Table 1. Scaling exponents from different theories ` ∝ N−α. `: test RMSE loss, N : number of model parameters, d: input intrinsic dimension, k: order
of piecewise polynomial, m: derivative order as in function class Wm.

Leveraging the 1D structure to get better scaling laws

Advantages of KAN Architecture

1. Interpretability: KANs with much smaller network size and fewer trainable parameters is normally

comparable in performance to MLPs. This makes them ideal for model reduction or symbolic regression.

2. Accuracy: KANs can achieve much smaller error due to mesh refinement of splines, with better scaling

laws.

Figure 1. Should I used KANs or MLPs?

Other Applications

(What we have done:) Data regression; Anderson localization; Imaging.

(Future works:) Large Language Models.

Fitting Special Functions

We compare KANs and MLPs on four toy example, among which are exponential and Bessel functions.
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f(x, y) = exp(sin( x) + y2)
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Figure 2. KANs can almost saturate the fastest scaling law predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

Solving Partial Differential Equations (PINNs)

We consider a Poisson equation with zero Dirichlet boundary data. For Ω = [−1, 1]2, consider the PDE
uxx + uyy = f in Ω ,

u = 0 on ∂Ω .
(4)

f = −π2(1 + 4y2) sin(πx) sin(πy2) + 2π sin(πx) cos(πy2) for which u = sin(πx) sin(πy2) is the true solution.

We use the framework of physics-informed neural networks (PINNs) [4] with loss prescribed by

losspde = αlossi + lossb := 0.01
ni

ni∑
i=1

|uxx(zi) + uyy(zi) − f (zi)|2 + 1
nb

nb∑
i=1

u2 ,

where we use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of ni

points zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, discretized
and evaluated by a uniform sampling of nb points on the boundary.
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Figure 3. The PDE example. We plot L2 squared and H1 squared losses between the predicted solution and ground truth solution. First and second:

training dynamics of losses. Third and fourth: scaling laws of losses against the number of parameters. KANs converge faster, achieve lower losses, and

have steeper scaling laws than MLPs.

AI for Math: Knot Theory

Method Architecture Parameter Count Accuracy

Deepmind’s MLP 4 layer, width-300 ∼ 3 × 105 78%
KANs 2 layer, [17, 1, 14] (G = 3, k = 3) ∼ 200 81.6%

Figure 4. Knot dataset, supervised mode. With KANs, we rediscover Deepmind’s results that signature is mainly dependent on meridinal translation.

In [1], supervised learning and human domain experts were combined to arrive at a new theorem relating

algebraic and geometric topological invariants. Deepmind’s main results for the knot theory dataset are:

(1) They use network attributionmethods to find the signature σ is mostly dependent onmeridinal distance

µ (real µr, imag µi) and longitudinal distance λ. (2) Human scientists identified that σ has high correlation

with the slope ≡ Re(λ
µ) = λµr

µ2
r+µ2

i
and derived a bound for |2σ − slope|. KANs not only rediscover these results

with much smaller networks and much more automation, but also present new results and insights.

References

[1] Alex Davies, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András

Juhász, et al.

Advancing mathematics by guiding human intuition with ai.

Nature, 600(7887):70–74, 2021.

[2] Eric J Michaud, Ziming Liu, and Max Tegmark.

Precision machine learning.

Entropy, 25(1):175, 2023.

[3] Tomaso Poggio, Andrzej Banburski, and Qianli Liao.

Theoretical issues in deep networks.

Proceedings of the National Academy of Sciences, 117(48):30039–30045, 2020.

[4] Maziar Raissi, Paris Perdikaris, and George E Karniadakis.

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential

equations.

Journal of Computational physics, 378:686–707, 2019.

[5] Utkarsh Sharma and Jared Kaplan.

A neural scaling law from the dimension of the data manifold.

arXiv preprint arXiv:2004.10802, 2020.

https://roywangyx.github.io/ International Conference on Multiscale Modeling and Simulation based on Physics and Data 2024, UCLA roywang@caltech.edu

https://roywangyx.github.io/
roywang@caltech.edu

