Exponentially Convergent Multiscale Finite Element Method

Yixuan (Roy) Wang*

Caltech ACM roywang@caltech.edu

ICIAM

May 23, 2023

· · · · · · · · · · · · · · · · · · ·	
VIVIIOB W//OB	~
	2

ExpMsFEM

May 23, 2023 1/12

3

< □ > < 同 > < 回 > < 回 > < 回 >

Systematic approach for solving multi-query multiscale problems efficiently using **offline bases**, with state-of-the-art accuracy **rigorously**.

- For elliptic equations: Multiscale Modeling & Simulation 2021
- For Helmholtz equations: Multiscale Modeling & Simulation 2023
- Review paper: Communications on Applied Mathematics and Computation 2023

Joint work with Chen, Hou.

Ongoing collaboration on generalization to the Schrödinger equation.

• Model problem in 2D and 3D:

 $-\nabla \cdot (A(x)\nabla u) - P(x)u = f$, in $\Omega \subset \mathbb{R}^d$, w/ boundary conditions

wave mechanics, subsurface flows, electrostatics, seismology.

Heterogeneity: $A, P \in L^{\infty}(\Omega)$ without scale separation.

$$0 < A_{\min} \leq A(x) \leq A_{\max}$$
. $f \in L^2(\Omega)$.

- Highly Oscillatory solutions.
- Model reduction: use a small number of local basis functions to achieve desired accuracy theoretically and numerically.
 - Desirable if same offline bases can be used with different f.

Yixuan Wang	

Literature on multiscale methods for elliptic equations

Local bases + global coupling

- Multiscale Finite Element Methods (MsFEM): Hou, Wu 1997
- Genealized Finite Element Methods (GFEM) via Partition of Unity Method (PUM): Babuska, Lipton 2011

Global bases via variational problem + local truncation

- Gamblets: Owhadi-Zhang-Berlyand 2014
- Localizable Orthogonal Decompositions (LOD): Malqvist, Peterseim 2014
- VMS 1998, HMM 2003...

Helmholtz equation with high wave number k:

$$\mathcal{L}_k u \coloneqq - \nabla \cdot (A \nabla u) - k^2 V^2 u = f$$
, in Ω , w/ boundary conditions

where $V \in L^{\infty}(\Omega)$.

Numerical difficulty: pollution effect (Babuska, Sauter 1997)

- Maximal mesh size to address the wave length: O(1/k).
- Standard FEM: local mesh size $H = O(1/k^2)$.
- Ideal method: H = O(1/k)!
- Mathematical challenge: indefinite operator.

~ ~ ~					
· • •	~ 11	<u> </u>	- MA	() r	
	лu	an		aı	18.
					•••

Two key insights and methods that capture oscillation with ${\cal O}({\cal H})$ error

• Gårding-type inequality: good approximation implies good solution. hp-FEM with polynomial of order $O(\log k)$. (Melenk, Sauter 2010)

 Poincaré inequality: local problem resembles elliptic problem. LOD with support size O(H log(1/H) log k). (Peterseim 2017)
 Our method: Best of (G) and (P)

ExpMsFEM with first exponential rate of convergence. (C-H-W)

• Later: PUM with same rate of convergence. (Ma-Alber-Scheichl) Four methods have comparable complexity if aimed at minimal accuracy: O(1/k) error in **energy norm**, mesh size O(1/k), DoF $O(k^d \text{poly}(\log(k)))$.

イロト イヨト イヨト イヨト

Explore the solution space (G)

- Mesh structure in 2D: nodes, edges and elements.
- Split the solution locally (P): in each *T*, *u* = *u*^h_{*T*} + *u*^b_{*T*}.

$$\begin{cases} \mathcal{L}_k u_T^{\mathsf{h}} = 0 \text{ in } T \\ u_T^{\mathsf{h}} = u \text{ on } \partial T, \\ \\ \mathcal{L}_k u_T^{\mathsf{b}} = f \text{ in } T \\ u_T^{\mathsf{b}} = 0 \text{ on } \partial T. \end{cases}$$

 $x \in \mathcal{N}_H, e \in \mathcal{E}_H, T \in \mathcal{T}_H$

• Merge: For each T, $u^{\mathsf{h}}(x) = u_T^{\mathsf{h}}(x)$ and $u^{\mathsf{b}}(x) = u_T^{\mathsf{b}}(x)$, when $x \in T$.

Key insights of exponential accuracy

- (Generalized) harmonic-bubble splitting (Hetmaniuk, Lehoucq 2010), (Hou, Liu 2016)
- Edge localization
- Oversampling (Hou, Wu 1997) for low-complexity edge space

Theorem (Informal statement of exponentially efficient edge bases)

Suppose H = O(1/k), then for each edge e, we can find m local edge bases such that the relative error using those edge bases to approximate any edge function is at most $C \exp\left(-bm^{\frac{1}{d+1}}\right)$.

· • •	MILLO ID	~~/	n n	~
	xuall	~ ~ ~	a 11	×
				-

On a mesh of lengthscale H = O(1/k), u can be computed by

$$u = \underbrace{\sum_{i \in I_1} c_i^f \psi_i^{(1)}}_{(\mathsf{I})} + \underbrace{\sum_{i \in I_2} \psi_i^f}_{(\mathsf{II}), O(H)} + C \exp(-bm^{\frac{1}{d+1}})$$
 (Energy norm)

b, C constants independent of H, k. $\psi_i^{(1)}, \psi_i^f$ local support of size H. • $\psi_i^{(1)}$ via local SVD of \mathcal{L}_k , offline, parallelizable $\#I_1 = O(m/H^d)$ • ψ_i^f via solving locally $\mathcal{L}_k u = f$ online, parallelizable $\#I_2 = O(1/H^d)$ • c_i^f obtained by Galerkin methods with bases $\psi_i^{(1)}$; offline matrix A data-adaptive coarse-fine scale decomposition

イロト (過) (日) (日) (日) (日) (0)

Artificial example with rough media and high wavelength

Rough media, high wavelength $k = 2^5$ with mixed boundary conditions.

Figure: Left: the contour of A; right: relative errors in the energy norm.

Exponential decaying error; works better in practice than PUM.

Yiviian	Wang
- induan	wang

• $A = V = \beta = 1$, $k = 2^7$, fine mesh $h = 2^{-10}$, coarse mesh $H = 2^{-5}$.

• Exact solution: $u(x_1, x_2) = \exp(-ik(0.6x_1 + 0.8x_2)).$

Figure: High wavenumber example. Left: $e_{\mathcal{H}}$ versus m; right: e_{L^2} versus m.

 V is 	(IID)	~~///	200	
	uan	~ ~ ~	ang	

$$\Omega_{\varepsilon} = (0.25, 0.75)^2 \cap \bigcup_{j \in \mathbb{Z}^2} \varepsilon \left(j + (0.25, 0.75)^2 \right), \quad A(x) = \begin{cases} 1, & x \notin \Omega_{\varepsilon} \\ \varepsilon^2, & x \in \Omega_{\varepsilon} \end{cases}.$$

$$\beta = 1, V = 1, k = 9.$$

Figure: High contrast example. Left: $e_{\mathcal{H}}$ versus m; right: e_{L^2} versus m.

Vivuon	v	ana
I IAuaii	v v	ane

May 23, 2023 12 / 12