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Summary of our contribution: ExpMsFEM

Systematic approach for solving multi-query multiscale problems efficiently
using offline bases, with state-of-the-art accuracy rigorously.

m For elliptic equations: Multiscale Modeling & Simulation 2021
m For Helmholtz equations: Multiscale Modeling & Simulation 2023

m Review paper: Communications on Applied Mathematics and
Computation 2023

Joint work with Chen, Hou.
Ongoing collaboration on generalization to the Schrodinger equation.
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Multiscale model reduction

m Model problem in 2D and 3D:
—V - (A(z)Vu) — P(z)u = f, in Q C RY,  w/ boundary conditions

wave mechanics, subsurface flows, electrostatics, seismology.

m Heterogeneity: A, P € L*°()) without scale separation.
0 < Apin < A(x) < Apax. f € L?(Q).
m Highly Oscillatory solutions.

m Model reduction: use a small number of local basis functions to

achieve desired accuracy theoretically and numerically.
m Desirable if same offline bases can be used with different f.
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Literature on multiscale methods for elliptic equations

m Local bases + global coupling

m Multiscale Finite Element Methods (MsFEM): Hou, Wu 1997
m Genealized Finite Element Methods (GFEM) via Partition of Unity
Method (PUM): Babuska, Lipton 2011

m Global bases via variational problem + local truncation
m Gamblets: Owhadi-Zhang-Berlyand 2014
m Localizable Orthogonal Decompositions (LOD): Malgqvist, Peterseim
2014

m VMS 1998, HMM 2003...
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Helmholtz equation and pollution effect

Helmholtz equation with high wave number k:
Lyu = —V-(AVu) — k*V2u = f, in Q, w/ boundary conditions

where V € L>(Q).
m Numerical difficulty: pollution effect (Babuska, Sauter 1997)

m Maximal mesh size to address the wave length: O(1/k).
m Standard FEM: local mesh size H = O(1/k?).
m ldeal method: H = O(1/k)!

m Mathematical challenge: indefinite operator.
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Overcoming the pollution effect

Two key insights and methods that capture oscillation with O(H) error

m Garding-type inequality: good approximation implies good solution.
hp—FEM with polynomial of order O(log k). (Melenk, Sauter 2010)

m Poincaré inequality: local problem resembles elliptic problem.
LOD with support size O(H log(1/H)logk). (Peterseim 2017)

Our method: Best of (G) and (P)
m ExpMsFEM with first exponential rate of convergence. (C-H-W)

m Later: PUM with same rate of convergence. (Ma-Alber-Scheichl)

Four methods have comparable complexity if aimed at minimal accuracy:
O(1/k) error in energy norm, mesh size O(1/k), DoF O(k?poly(log(k))).
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Explore the solution space

m Mesh structure in 2D:

nodes, edges and elements. S s B
| | | |

m Split the solution locally (P): 3, L L o
ineach T, u = u% —i—u%. : : T !
Liufy=0inT i thF”:
e N
Loud=finT : 3 3 3 3

{ u%zOon@T. e

x ENH,e ESH,TE T
m Merge: For each T, uM(z) = ub.(z)
and u®(x) = ub(x), when z € T'.
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Key insights of exponential accuracy

m (Generalized) harmonic-bubble splitting (Hetmaniuk, Lehoucq
2010), (Hou, Liu 2016)

m Edge localization

m Oversampling (Hou, Wu 1997) for low-complexity edge space

Theorem (Informal statement of exponentially efficient edge bases)

Suppose H = O(1/k), then for each edge e, we can find m local edge
bases such that the relative error using those edge bases to approximate

1
any edge function is at most C' exp (—bmﬁ)
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Sketch of our result

On a mesh of lengthscale H = O(1/k), u can be computed by

u= Z clfwi(l) + Z %f +C exp(—bm%ﬂ) (Energy norm)
i€ly i€l
S—— N
O] (IN,O(H)
b, C constants independent of H, k. 1/151),1/1{ local support of size H.
(] @Dgl) via local SVD of Ly, offline, parallelizable #I, = O(m/H?)
[ %f via solving locally Lju = f online, parallelizable #I, = O(1/H?)
[ c{ obtained by Galerkin methods with bases wgl); offline matrix

A data-adaptive coarse-fine scale decomposition
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Artificial example with rough media and high wavelength

Rough media, high wavelength & = 2 with mixed boundary conditions.
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Figure: Left: the contour of A; right: relative errors in the energy norm.

Energy error

Exponential decaying error; works better in practice than PUM.
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Backup example of high wavenumber

mA=V=p3=1,k=27, fine mesh h = 2710 coarse mesh H = 275.

m Exact solution: u(z1,x2) = exp(—ik(0.6z1 + 0.8x2)).
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Figure: High wavenumber example. Left: ey versus m; right: er2 versus m.
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Backup example of high contrast: Mie resonances

1, z¢Q.
- 2

Qe = (0.25,0.75)2 N | ] e (j + (0.25,0.75)%) ,  A(x)
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Figure: High contrast example. Left: ey versus m; right: er2 versus m.
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